A New Self—Scaling Technique for the Combined Barrier and Penalty Constrained Algorithm

Abbas Y. Al-Bayati Eman T. Hamed Rafel Shref
Department of mathematic
College of Computer and Mathematical Science
Mosul University

(Received 8/3/2003 , Accepted 13/6/2005)

ABSTRACT
In this paper we have investigated a self-scaling technique for the variable metric method to the increase its effectiveness for solving ill-problems. This technique is too effective in NOF;NOC;NOI and NOG, when compared with other established algorithms to solve standard constrained optimization problems.

INTRODUCTION
1-General Introduction to Nonlinear Constrained optimization
The general constrained minimization problem
minimize $f(x)$
subject to $c_i(x) \leq 0 \quad i = 1...m$
$h_i(x) = 0 \quad i = m+1...L$(1)
where x is an n-dimensional vector and the functions $f(x)$, $c_i(x)$, $i = 1...m$ and $h_i(x) = 0$, $i = m+1,...,L$ are continuous and usually as-summed to possess continuous second partial derivatives. The constraints in eq. (1) are referred to as functional constraints.

There are basically two different kinds of constrained optimization approaches:
Indirect Method: changes the constrained optimization into unconstrained optimization to be solved.
(Sequential Unconstrained Minimization Technique, SUMT)

Direct Method: deals with the constraints directly in the search for the Optimum. (Kwon, 2001)

2- Sequential Unconstrained Minimization Techniques (SUMT)

Main idea:
- Solve a constrained optimization problem by solving a sequence of unconstrained optimization problems, and in the limit, the solutions of the unconstrained problems will converge to the solution of the constrained problem.
- Use an auxiliary function that incorporates the objective function together with "penalty" terms that measure violations of the constraints. INT[2]

2-1 Classical SUMT

Two groups of classical methods namely:
- **Barrier methods**: impose a penalty for reaching the boundary of an inequality constraint.
- **Penalty methods**: impose a penalty for violating a constraint.

Are used for this algorithm in solving constrained non-linear optimization problem.

3-Exterior Point Methods (Penalty function)

Definition: A function \(p(x) : R^n \rightarrow R \) is called a penalty function for eq. (1) if it satisfies

1- \(p(x) = 0 \) if \(c(x) \leq 0 \), \(h(x) = 0 \) and
2- \(p(x) > 0 \) if \(c(x) \leq 0 \) or \(h(x) \neq 0 \)

Penalty function are typically defined by

\[
p(x) = \sum_{i=1}^{m} \phi(c_i(x)) + \sum_{i=m+1}^{f} \phi(h_i(x))
\]

Where

1- \(\phi(y) = 0 \) if \(y \leq 0 \) and \(\phi(y) > 0 \) if \(y > 0 \)
2- \(\phi(y) = 0 \) if \(y = 0 \) and \(\phi(y) > 0 \) if \(y \neq 0 \)

3-1 General Type of Penalty Function Methods

There are several types of penalty function method with the inequality constrained which has the following two terms:

1- \(\phi(c_i(x)) = \left[\min(0, c_i(x)) \right]^2 \) (quadratic loss function)
2- \(\phi(c_i(x)) = \left[\min(0, c_i(x)) \right] \) (Zangwills, 1967) loss function

or with the equality constraint which has the following two forms

1- \(\phi(h_i(x)) = (h_i(x))^2 \)
2- \(\phi(h_i(x)) = |h_i(x)| \)

Hence .Our objective function may be define by

\[
\theta(x_k, \mu_k) = f(x_k) + \mu \sum_{i=1}^{m} \phi(g_i(x)) + \frac{1}{\mu} \sum_{i=m+1}^{f} \phi(h_i(x))
\]
4-Interior Point Methods (Barrier Function)
Definition: A Barrier function for eq(1) is any function \(B(x): R^n \rightarrow R \) if it satisfies
- \(B(x) > 0 \) for all \(x \) that satisfy \(c(x) > 0 \)
- \(B(x) \rightarrow \infty \) as \(\lim_{x \rightarrow x^c} \max \{c_i(x)\} = 0 \)

The idea in a barrier method is to dissuade points \(x \) from ever approaching the boundary of the feasible region. We consider solving
\[
\theta(x_k, \mu_k) = \min f(x_k) + \mu_k B(x_k)
\]
\[\text{s.t. } c(x_k) > 0 \]
\[x_k \in R^n \]
For a sequence of \(\mu_k \rightarrow 0 \). Note that the constraints \(c(x_k) > 0 \) are effectively unimportant in \(\theta(x_k, \mu_k) \), as they are never binding in \(\theta(x_k, \mu_k) \). INT[1]

4-1 General Types of Barrier Function Method
There are several types of Barrier function method
\[1- B(x) = \sum_{i=1}^{m} \frac{1}{c_i(x)} \quad \text{……………………………(Carrol,1961)} \]
\[2- B(x) = \sum_{i=1}^{m} \frac{1}{c_i(x)} e, \quad e > 0 \quad \text{……………………………(Toint etal., 1997)} \]
\[3- B(x) = -\sum_{i=1}^{m} \ln(c_i(x)) \quad \text{…………………………… (Frish ,1955)} \]

5-Mixed Exterior-Interior Point Method
The algorithms described in the previous section can be used directly to solve a problem involving strict equality constraint or inequality constraint. In this section, we consider some method, which can be used to solve a general class (equality and inequality of problem) thus, the new problem can be converted into an unconstrained minimization problem by constructing a function of the form. (Fiacco & Mc Cormick, 1968a, 1968b)
\[
\theta(x_k, \mu_k) = f(x_k) + \mu \sum_{i=1}^{m} \phi[c_i(x)] + \frac{1}{\mu} \sum_{i=m+1} h_i(x) \quad \text{…………………………… (2)}
\]
Although both exterior and interior-point methods have many points of similarity. They represent two different points of view. In an exterior-point procedure, we start from an infeasible point and gradually approach feasibility. While doing so, we move away from the unconstrained optimum of the objective function. In an interior-point procedure we start at a feasible point and gradually improve our objective function, while maintaining feasibility. The requirement that we begin at a feasible point and remain within the interior of the feasible inequality constrained region is the chief difficulty with interior-point methods. In many problems we have no easy way to determine a feasible starting point, and a separate initial computation may be needed. Also, if equality constraints are present, we do not have a feasible inequality constrained region in which to maneuver freely. Thus interior-point methods cannot handle equalities.
We many readily handle equalities by using a “mixed” method in which we use interior-point penalty functions for inequality constraints only. Thus, if the first \(m \) constraints are inequalities and constraints \((m+1)\) to \(n \) are equalities, our problem becomes:

\[
\text{Minimize} \quad \theta(x, \mu_k) = f(x) + \mu_k B(x_k) + \frac{1}{\mu_k} p(x_k) \quad \text{………………………….. (3)}
\]

The function \(\theta(x, \mu) \) is then minimized for a sequence of monotonically decreasing \(\mu > 0 \).

We can solve the constrained problem given in eq.(1) construct a new objective function \(\theta(x, \mu_k) \) which is defined in eq.(2). Now our aim is to minimize the function \(\theta(x, \mu_k) \) by starting form a feasible point \(x_0 \) and with initial value \(\mu_0 = 1 \) and the method reducing \(\mu_k \) is simple iterative method such:

\[
\mu_{k+1} = \frac{\mu_k}{\hat{\mu}} \quad \text{………………………….. (4)}
\]

Where \(\hat{\mu} \) is a constant equal to 10 and the search direction \(d_k \) in this case can be defined

\[
d_k = -H_k g_k \quad \text{………………………….. (5)}
\]

where \(H \) is a positive definite symmetric approximation matrix to the inverse Hessian matrix \(G^{-1} \) and \(g \) is the gradient vector of the function \(\theta(x_k, \mu_k) \). The next iteration is set to further point

\[
x_{i+1} = x_i + \lambda_i d_i \quad \text{………………………….. (6)}
\]

where \(\lambda \) is a scalar chosen in such that \(f_{k+1} < f_k \). We thus test \(c_i(x_{k+1}) \) to see that it is positive for all \(i \). We find a feasible \(x_{k+1} \) and we can then proceed with the interpolation. Then a correction matrix to get updates the matrix \(H_k \)

\[
H_{k+1} = H_k + \phi_k \quad \text{………………………….. (7)}
\]

where \(\phi_k \) is a correction matrix which satisfies quasi-Newton condition namely \((H_{k+1} y_k = \sigma v_k) \) where \(v_k \) and \(y_k \) are difference vector between two successive points and gradients respectively and \(\sigma \) is any scalar.

The initial matrix \(H_0 \) chosen to be identity matrix \(I \). \(H_k \) is updated through the formula of BFGS update. (Fletcher, 1970)

\[
H_{k+1} = H_k^{(1)} + H_k^{(2)} \quad \text{………………………….. (8)}
\]

where

\[
H_k^{(1)} = H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + w w^T \quad \text{………………………….. (9)}
\]

\[
H_k^{(2)} = \frac{v_k v_k^T}{y_k^T y_k} \quad \text{………………………….. (10)}
\]

and

\[
w = (y_k^T H_k y_k)^{0.5} \frac{v_k}{y_k^T y_k} - \frac{H_k y_k}{y_k^T H_k y_k} \quad \text{………………………….. (11)}
\]

And terminate of the method if
\[|x_i - x_{i-1}| < \varepsilon \](12)

where \(\varepsilon = 0.000001 \), and

\[\mu_{k+1} = \frac{\mu_k}{10} \](13)

5-1 General Type of Mixed Interior and Exterior Point Methods

1- \(\theta(x, \mu_k) = f(x) + \mu_k B(x_k) + \frac{1}{\text{sqrt}(\mu_k)} p(x_k) \)(Bigg,1983)

2- \(\theta(x, \mu_k) = f(x) + \mu_k B(x_k) + \frac{1}{\mu_k} p(x_k) \)(Rao,1994)

3- \(\theta(x, \mu_k) = f(x) - \mu_k \bar{B}(x_k) + \frac{1}{\mu_k} p(x_k) \)(Gettfried,1973)

4- \(\theta(x, \mu_k) = f(x) + \mu_k \hat{B}(x_k) + \frac{1}{\mu_k} p(x_k) \) \(\varepsilon > 0 \)(Toint, etal,1997)

Where

- \(B(x) \): Inverse Barrier function which handles the inequality.
- \(\hat{B}(x) \): Inverse Barrier function which handles the equality.
- \(\bar{B}(x) \): Log Barrier function which handles the inequality.
- \(p(x) \): Penalty function which handles the equality.

5-2 Outlines of the Mixed Interior-Exterior Point Methods

Step1: Find an initial approximation \(x_0 \) in the interior of the feasible region for the inequality constraints i.e. \(c_i(x_0) > 0 \).

Step2: Set \(i = 1 \) and \(\mu_0 = 1 \) is the initial value of \(\mu_0 \).

Step3: Set \(d_i = -H_i g_i \).

Step5: Set \(x_{i+1} = x_i + \lambda d_i \), where \(\lambda \) is a scalar.

Step6: Update \(H \) by correction matrix defined in eq.(8)-(11).

Step7: Check for convergence i.e. if eq.(12) satisfied then stop.

Step8: Otherwise, set \(\mu_{i+1} = \frac{\mu_i}{10} \) and take \(x = x^* \) and set \(k = k+1 \) and go to step5.

6- New Self-Scaling Variable Metric Methods

In order to eliminate the truncation and rounding errors, the new scalar parameter \(\sigma \) is added to make the sequence and efficiency as problem dimension increase. The poor-scaling is an imbalance between the values of the function and change in \(x \). The function values may be change very little even though \(x \) is changing significantly. This difficulty can sometimes be remove by good scaling factor for the updating \(H \) and the performance of self-scaling methods is undoubtedly favorable in some cases especially when the number variables are large (scales, 1985).

An idea is multiplying part of \(BFGS \) by scaling factor \(\sigma \) before the update takes place. The original motivation for self-scaling method arises from the analysis of
quadratic objective function, and the main results also assume that exact line searches are performed.

Many authors have propose a special scaling as follow:

1- $\sigma_{k1} = \frac{v_k^T y_k}{4v_k^T g_k + 2v_k^T g_k - 6(f_{k+1} - f_k)}$ (Bigg, 1973) ...(14)

2- $\sigma_{k2} = \frac{v_k^T y_k}{y_k^T H_k y_k}$ (Oren, 1974) ...(15)

3- $\sigma_{k3} = \frac{y_k^T H_k y_k}{v_k^T y_k}$ (Al-Bayati, 1991)(16)

4- $\sigma_{k4} = \frac{v_k^T y_k}{2v_k^T g_k - 6(f_{k+1} - f_k)}$ (Al-Assady, 1991)

In QN - methods the approximation H_k to the inverse of the Hessian can be selected to satisfy the Quasi-Newton condition. (Paul K., 2000)

This paper we have suggested anew parameter say:

$$\sigma_{new} = (1 - \frac{v_i^T g_i}{y_i^T H y_i})^n$$

where

$$n = \text{number of variable}$$

6-1 Outlines of the New Self-Scaling method

Step 1: Find an initial approximation x_0 in the interior of the feasible region for the inequality constraints i.e. $c_i(x) > 0$.

Step 2: Set $i = 1$ and $\mu_0 = 1$ is the initial value of μ_0.

Step 3: Set $d_i = -H_i g_i$.

Step 4: Set $x_{i+1} = x_i + \lambda d_i$, where λ is a scalar.

Step 5: Update H by correction matrix which defined in eq.(8-11) where σ_{k3} is defined in eq.(18)

Step 6: Check for convergence if $|x_i - x_{i-1}| < \varepsilon$ where $\varepsilon = 1E - 5$ satisfied then stop.

Step 7: Otherwise, set $\mu_{i+1} = \frac{\mu_i}{10}$ and take $x = x^*$ and set $i = i + 1$ and go to Step 5.

7- Numerical Results:

Several standard non-linear constrained test functions were minimized to compare the new algorithms with standard algorithm see (Appendix). with $1 \leq n \leq 10$ and $1 \leq c_i(x) \leq 10$ and $1 \leq h_i(x) \leq 10$.

All the results are obtained using Pentium 4. All programs are written in FORTRAN language and for all cases the stopping criterion taken to be $|x_i - x_{i-1}| < \delta$, where $\delta = 10^{-5}$.
All the algorithms in this paper use the same ELS strategy which is the quadratic interpolation technique directly adapted from (Bunday, 1984).

The comparative performance for all of these algorithms are evaluated by considering NOF, NOI, NOG and NOC, where NOF is the number of function evaluations and NOI is the number of iterations and NOG is the number of gradient evaluations and NOC number of constrained evaluations.

In table (1) we have compared our new algorithm with the standard algorithm

Table 1: Comparison of the BFGS algorithm with the new Self-Scaling algorithm

<table>
<thead>
<tr>
<th>Test Fn.</th>
<th>BFGS- algorithm NOF(NOI)NOG(NOC)</th>
<th>Self-Scaling BFGS- algorithm NOF(NOI)NOG(NOC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-</td>
<td>2630(244)5(3)</td>
<td>1841(246)5(3)</td>
</tr>
<tr>
<td>2-</td>
<td>907(129)10(19)</td>
<td>777(121)10(19)</td>
</tr>
<tr>
<td>3-</td>
<td>103(53)7(11)</td>
<td>86(31)5(9)</td>
</tr>
<tr>
<td>4-</td>
<td>2153(263)8(13)</td>
<td>835(146)5(9)</td>
</tr>
<tr>
<td>5-</td>
<td>749(124)10(19)</td>
<td>760(126)10(19)</td>
</tr>
<tr>
<td>6-</td>
<td>146(53)2(1)</td>
<td>146(53)2(1)</td>
</tr>
<tr>
<td>7-</td>
<td>734(123)10(19)</td>
<td>707(124)10(19)</td>
</tr>
<tr>
<td>8-</td>
<td>2725(310)15(29)</td>
<td>2719(282)15(29)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix
1. \(\min f(x) = x_1x_4(x_1 + x_2 + x_3) + x_3 \)
 \[\begin{align*}
 &\text{s.t.} \\
 &x_1^2 + x_2^2 + x_3^2 + x_4^2 = 40 \\
 &x_1x_2x_3 \geq 25 \\
 &5 \geq x_1 \geq 1
 \end{align*} \]

2. \(\min f(x) = (x_1 - 2)^2 + \frac{1}{4}x_2^2 \)
 \[\begin{align*}
 &\text{s.t.} \\
 &2x_1 + 3x_2 = 4 \\
 &x_1 - \frac{7}{2} + x_2 \leq 1
 \end{align*} \]

3. \(\min f(x) = x_1^2 + x_2^2 \)
 \[\begin{align*}
 &\text{s.t.} \\
 &x_1 + 2x_2 = 4 \\
 &x_1^2 + x_2^2 \leq 5 \\
 &x_1 \geq 0
 \end{align*} \]

4. \(\min f(x) = x_1x_2 \)
 \[\begin{align*}
 &\text{s.t.} \\
 &25 - x_1^2 - x_2^2 = 0
 \end{align*} \]

5. \(\min f(x) = (x_1 - 2)^2 + (x_2 - 1)^2 \)
s.t.
\[x_1 - 2x_2 = -1 \]
\[\frac{-x_1^2}{4} + x_2^2 + 1 \geq 0 \]

6- \(\min f(x) = x_1^2x_2 \)

s.t.
\[x_1x_2 - \left(\frac{x_1^2}{2} \right) = 6 \]
\[x_1 + x_2 \geq 0 \]

7- \(\min f(x) = (x_1 - 3)^2 + (x_2 - 2)^2 \)

s.t.
\[x_1 + 2x_2 = 4 \]
\[x_1^2 + x_2^2 \leq 5 \]
\[x_i \geq 0 \]

8- \(\min f(x) = x_1^2 - x_ix_2 + x_2^2 \)

s.t.
\[x_1^2 + x_2^2 = 4 \]
\[2x_1 + x_2 \leq 2 \]

REFERENCES

Internet Reports: