A study of cardio-protective properties of omega-3 fatty acids after occurrence of acute myocardial ischemia in patients admitted to Al- Hussein Hospital in Karbala

Abstract:
Acute myocardial ischemia is one of the most common general health problem facing human being nowadays. In this study, we aimed to determine if the omega-3 fatty acid have a significant cardio-protective effect against myocardial ischemia or not in many patient who were admitted to Al-Hussein Hospital in Karbala. It was found that omega-3 has the ability to reduce cardiac troponin, cardiac creatin kinase, triglyceride and VLDL very significantly at p < 0.05. A sixty males with average age between 55-65 years old were divided into 2 groups equally. The first group was given n-3 fatty acid 1000 mg twice daily and the 2nd group was control group. There were significant reduction of all the parameters of the study (troponin reduced from 100% to 15%, creatine kinase reduced from 66 U/L to 41 U/L, VLDL reduced from 60 mg/dL to 5 mg/dL and triglyceride reduced from 96 mg/dL to 50 mg/dL) during the 30 days of the study. These results suggested that this agent had a significant cardio-protective properties against acute cardiac attack.

Introduction:
Acute myocardial ischemia is commonly known as a heart attack, occurs when the blood supply to part of the heart is interrupted causing some heart cells to die. This is most commonly due to occlusion (blockage) of a coronary artery following the rupture of a vulnerable atherosclerotic plaque, which is an unstable collection of lipids (like cholesterol) and white blood cells (especially macrophages) in the wall of an artery. The resulting ischemia (restriction in blood supply) and oxygen shortage, if left untreated for a sufficient period of time, can cause damage and/or death (infarction) of heart muscle tissue (myocardium). Omega-3 fatty acids (popularly referred to as n-3 fatty acids or n-3 fatty acids) are a family of unsaturated fatty acids that the human body cannot synthesize—3 fatty acids de novo so it must be obtained from food. In 1992 article (1) provides an overview of the research into Omega-3 fatty acids fatty acids, and is the basis of this section. The ‘essential’ fatty acids are essential to normal growth in young children and animals and supporting dermal integrity, renal function, and parturition. On September 8, 2004, the U.S. Food and Drug Administration gave "qualified health claim" status to eicosapentaenoic acid (EPA) and...
docosahexaenoic acid (DHA) n−3 fatty acids, stating that "supportive but not conclusive research shows that consumption of EPA and DHA [n−3] fatty acids may reduce the risk of coronary heart disease. There is a promising preliminary evidence that omega-3 fatty acids supplementation might be helpful in cases of depression and anxiety. Studies report highly significant improvement from omega-3 fatty acids supplementations alone and in conjunction with medication. Some research suggest that fish oil intake may reduce the risk of ischemic and thrombotic stroke. However, very large amounts may actually increase the risk of hemorrhagic stroke. In 1999, the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione Investigators reported in the Lancet, the results of major clinical study in 11,324 patients with a recent myocardial infarction. Treatment ONE gram per day of n−3 fatty acids reduced the occurrence of death, cardiovascular death and sudden cardiac death by 20%, 30% and 45% respectively. In April 2006, a team led by Lee Hooper at the University of East Anglia in Norwich, UK, published a review of almost 100 separate studies into n−3 fatty acids, found in abundance in oily fish. It concluded that they have a significant protective effect against cardiovascular disease. In other two different reviews performed in 2006 by the American Journal of Clinical Nutrition that both indicated decreases in total mortality and cardiovascular incidents (i.e. myocardial infarctions) associated with the regular consumption of fish and fish oil supplements. In another study published in the American Journal of Health System Pharmacy March 2007, patients with high triglycerides and poor coronary artery health were given 4 grams a day of a combination of EPA and DHA along with some monounsaturated fatty acids. Those patients with very unhealthy triglyceride levels (above 500 mg/dl) reduced their triglycerides on average 45% and their VLDL cholesterol by more than 50%. VLDL is a bad type of cholesterol and elevated triglycerides can also be deleterious for cardiovascular health.

Dietary sources:
Include fish, flax which has a very high n−3 content Six times richer than most fish oils in n−3, milk and cheese, eggs, and meat.

Materials and Method:
A sixty male, with age ranged between 55-65 years old with a history of chronic hypertension were followed for 30 days after occurrence of first attack of myocardial ischemia (myocardial infarction or unstable angina) in Al- Hussain General Hospital in Karbala. The patients were divided into 2 groups, Group I: In which 30 patients were taken omega-3 fatty acid 9Salamon fish oil just after the onset of acute cardiac ischemia at a dose of 1000 mg twice daily by oral route. Group II: (Control group), the other 30 patients not received omega-3 fatty acid. All these patients were followed by assessing cardiac specific troponin, triglyceride level, creatin kinase, and very low density lipoprotein (VLDL-Cholesterol).

Statistical analysis:
In this study, Chi square test and t-test were used as analytical method for the results.

Materials:
1- **Cardiac specific troponin (c-Tn):** This test is very specific and sensitive for myocardial ischemia. At room temperature, 2 drops of the specimen (=50 micro liter) was added to the specimen well(s). Positive results appeared as two colored lines in the kit of the test device.

2- **Determination of Creatin kinase (CK):** The serum level exceeds normal range within 4-8 hours after the onset of acute myocardial attack and declines at 2-3 days.

3 **Determination of serum Triglyceride concentration:**
Procedure:

<table>
<thead>
<tr>
<th></th>
<th>Sample</th>
<th>Standard</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working reagent</td>
<td>1ml</td>
<td>1ml</td>
<td>1ml</td>
</tr>
<tr>
<td>Sample</td>
<td>10 µl</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Standard</td>
<td>-</td>
<td>10 µl</td>
<td>-</td>
</tr>
<tr>
<td>Distal water</td>
<td>-</td>
<td>-</td>
<td>10 µl</td>
</tr>
</tbody>
</table>

Mixture was left for 5 mints at 37 Cº, then the absorbance was read at 550 nm

Calculations: Triglycerides in the sample mg /dl = (absorbance sample/ absorbance of standard) × concentration of standard.

4- Determination of VLDL level: By dividing the triglyceride level on 5.

Results:

1- Determination of percentage of cardiac specific troponin:

Table 1: Demonstrate the average percentage of troponin level during the 30 days of this study ± 2 SD at (p<0.05).

<table>
<thead>
<tr>
<th>group</th>
<th>Within first 2 hours</th>
<th>At 6 hours</th>
<th>At 12 hours</th>
<th>At 24 hours</th>
<th>At 48 hours</th>
<th>At day 30</th>
<th>Q- sequare test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient not received omega- 3 fatty acid</td>
<td>100±5.2</td>
<td>90±4.3</td>
<td>90±5</td>
<td>87±6</td>
<td>86±5.6</td>
<td>80±7</td>
<td>N.S</td>
</tr>
<tr>
<td>Patient received omega- 3 fatty acid</td>
<td>100±5.3</td>
<td>84±4.7</td>
<td>62±3.5</td>
<td>45±2.5</td>
<td>35±4.1</td>
<td>15±1.2</td>
<td>Highly significant ***</td>
</tr>
</tbody>
</table>

This table shows a dramatic reduction of cardiac troponin when omega- 3 used and this result is consistent with that obtained from Davidson et al (17) and this can be explained by that omega- 3 fatty acid had an anti-oxidant properties that can reduce free radicals induced myocardial injury.

2- Determination of creatin kinase level:

Table 2: Elicit the mean creatin kinase level in unit per liter during the 30 days of this study ± 2 SD at (p<0.05).

<table>
<thead>
<tr>
<th>group</th>
<th>Within first 2 hours</th>
<th>At 6 hours</th>
<th>At 12 hours</th>
<th>At 24 hours</th>
<th>At 48 hours</th>
<th>At day 30</th>
<th>T- test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient not received omega- 3 fatty acid</td>
<td>65±12</td>
<td>72±10</td>
<td>76±8</td>
<td>80±11</td>
<td>78±10.5</td>
<td>82±12.9</td>
<td>N.S</td>
</tr>
<tr>
<td>Patient received omega- 3 fatty acid</td>
<td>66±11.2</td>
<td>68±11</td>
<td>72±13.5</td>
<td>64±9.8</td>
<td>52±9.9</td>
<td>41±10.7</td>
<td>Highly significant **</td>
</tr>
</tbody>
</table>

N.S = not significant
This table ensures the cardioprotective effect of omega-3 fatty acids in patients with an acute attack of cardiac ischemia which may be owing to antioxidant properties and cholesterol lowering effects and this conclusion agree with the result obtained from Bucher et al study (18).

3- Determination of serum triglyceride level:
Table 3: Shows mean triglyceride level (in mg/dl) ±2 SD along 30 days of treatment with 0 omega-3 at (p<0.05).

<table>
<thead>
<tr>
<th>group</th>
<th>Within first 2 hours</th>
<th>At 6 hours</th>
<th>At 12 hours</th>
<th>At 24 hours</th>
<th>At 48 hours</th>
<th>At day 30</th>
<th>T- test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient not received omega-3 fatty acid</td>
<td>98±44</td>
<td>94±46</td>
<td>95±43</td>
<td>98±53</td>
<td>93±58</td>
<td>92±48</td>
<td>N.S</td>
</tr>
<tr>
<td>Patient received omega-3 fatty acid</td>
<td>96±42</td>
<td>97±45</td>
<td>90±56</td>
<td>91±34</td>
<td>89±37</td>
<td>50±26</td>
<td>Highly significant***</td>
</tr>
</tbody>
</table>

A productive results were originated from this study suggesting that omega-3 fatty acid can reduce triglyceride level thereby reduce the risk of progression of present ischemia and to minimize subsequent complications of it due to direct lipid lowering properties of the tested agent. Our findings go with a similar one obtained by Stone et al (19).

4- Determination of very low density lipoprotein (VLDL) cholesterol:
Table 4: Clarify the mean level of VLDL in mg/dL ±2 SD at (p <0.05) during the 30 days of this study.

<table>
<thead>
<tr>
<th>group</th>
<th>Within first 2 hours</th>
<th>At 6 hours</th>
<th>At 12 hours</th>
<th>At 24 hours</th>
<th>At 48 hours</th>
<th>At day 30</th>
<th>T- test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient not received omega-3 fatty acid</td>
<td>55±1.3</td>
<td>48±2.1</td>
<td>51±2.2</td>
<td>52±3</td>
<td>49±1.15</td>
<td>50±2</td>
<td>N.S</td>
</tr>
<tr>
<td>Patient received omega-3 fatty acid</td>
<td>60±3.1</td>
<td>59±2.5</td>
<td>61±2.7</td>
<td>55±3.1</td>
<td>40±2.1</td>
<td>5±1.4</td>
<td>Highly significant***</td>
</tr>
</tbody>
</table>

A remarkable reduction in serum VLDL level was seen when omega-3 fatty acid used in this study which in turn reflect an antagonizing potential against myocardial ischemia that is similar to that found by McKenney et al (20).

Conclusion:
From the previous data collection, it is very clear that omega-3 fatty acid had a very affective as cardio protective to minimize the complications and disability that produced by an attack of myocardial ischemia suggesting that this substance can be used publicly as an adjuvant therapy to diminish the signs, symptoms, and dangerous complications of myocardial attacks.

Recommendations:
We recommend that further trials must be performed to assess further effects of omega-3 fatty acid to protect the heart weather in a direct or indirect way and to evaluate the mechanism(s) by which this substance act as a protective agent.

References:

3-Green, Pnina; Hermesh, Haggai; Monselise, Assaf; Maromb, Sofi; Presburgerb, Gadi; Weizman, Abraham (February 2006). "Red cell membrane omega-3 fatty acids are decreased in non depressed patients with social anxiety disorder". European Neuropsycho-pharmacology 16 (2): 107–113.

17- Davidson, Michael H.; Stein, Evan A.; Bays, Harold E.; Maki, Kevin C.; Doyle, Ralph T.; Shalwitz, Robert A.; Ballantyne, Christie M.; Ginsberg, Henry N. (July 2007). "Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to Simvastatin 40 mg/d in hypertriglyceridemic patients: An 8-week, randomized, double-blind, placebo-controlled study". Clinical Therapeutics (Elsevier) 29 (7): 1354–1367.

19- Stone, Neil J. (November 1996). "Fish consumption, fish oil, lipids, and coronary heart
20- McKenney, James M.; Sica, Domenic (March 2007). "Prescription omega-3 fatty acids for
the treatment of hypertriglyceridemia". American Journal of Health-System
Pharmacy 64 (6):595–605.