Zoonotic & Nonzoonotic Endoparasites of Rodents from Some Districts in Baghdad

Raad Hammodi Hasson* PhD

Abstract

A survey for zoonotic and nonzoonotic endoparasites of rodents carried out at some highly infested districts of Baghdad. A total of 186 rodents of three species was examined, comprising of 89 R. norvegicus, 62 Rattus rattus and 35 Mus musculus. Fourteen species belonging to twelve genera were identified. The most prevalent species of rodents was R. norvegicus in which zoonotic H. diminuta (24%), H. nana (10.7%) and Cysticercus fasciolaris (9%) were the most prevalent species of protozoan and helminth parasites respectively. Zoonotic protozoa T. lewisi and Sarcocystis sp. in R. norvegicus were most prevalent than B. microti in R. rattus. Nonzoonotic endoparasites Vampirolepis sp., M. rodentium, S. obvelata, Trichuris sp. and T. musculi were recorded with wide variation prevalence in the rodents species under study. New records of B. microti, new host for T. lewisi and C. fasciolaris (Strobilocercus) Hydatigena type larval infection of Taenia sp. of rodents species in Baghdad area under study.

Introduction

While little information is available on the distribution and incidence of most of the diseases with rodent reservoirs, many of them are known to be widespread and may have considerable public health importance in some of the foci in which they are found [12]; The frequency of disease transmission is facilitated by close - living of the three well known and wide spread commensal species Rattus norvegicus & Rattus rattus Mus musculus [11]. Rodents may transmit disease - causing organisms, particularly zoonotic endoparasites like cutaneous & visceral leishmaniasis; where in Iraq, the Leishmania sp. isolated from the viscera of the rat gave a pattern identical to that of L. tropica [4]; L. tropica has been found in one specimen of R. rattus [9] & L. infantum with L. donovani has been isolated from infected rats (Rattus rattus) in southern Saudi Arabia. [14] while only one serum of a R. norvegicus showed anti-Leishmania antibodies with 1:80 titer against Leishmania parasites with no parasite was found on impression smear slides of liver or spleen of this rat, in South West Iran [18].

College of Medicine\ University of Diyala •
Concerning Toxoplasma gondii, Dubeya et al. (2006), During 2005, 238 rats (Rattus norvegicus) were trapped in Grenada, West Indies, and their sera along with tissue samples from their hearts and brains were examined for T. gondii infection; Antibodies to T. gondii were assayed by the modified agglutination test (MAT, titer 1:40 or higher); only 2 (0.8%) of 238 rats were found to be infected.

Brains and hearts of all rats were bio-assayed in mice; Toxoplasma gondii was isolated from the brain and the heart of only one rat, which had a MAT titer of 1:320; Although in Egypt, Rifaat et al. (1971) & also in Croatia Kuticici et al. (2005), recorded isolate of T.gondii when injected rats & mice with brain tissue from outdoor caught rats & mice. The species most frequently implicated in human babesiosis; Babesia microti (Munich B. microti strain) isolated from Mus musculus in northeastern Poland [32]; in Taiwan Of the 35 rats (8 R. rattus, 12 R. coxinga, and 15 R. norvegicus rats), only R. coxinga had evidence of babesial infection [31]; Anderson et al. (1991) report the largest number of human babesiosis cases to date have been contracted on the mainland United States where the isolation of B. microti from humans living in southeastern Connecticut and also the isolation of B. microti from a mouse captured in Connecticut as early as 1988. A human case of T. lewisi in a child in India reported by Johnson (1933), and on a case of sick infant from Thailand Nachai et al. 2007 was concluded that the infant was infected with a T. lewisi-like (Herpetosoma) species, hereby Shrivastava & Shrivastava (1974) mentioned about two human cases of trypanosoma sp. in India; Pinto et al. (2006) mentioned about first report of T. lewisi and T. rangeli from the rat R. rattus in Ecuador; this view shed light on the neglected public health of this parasite. In Arbil, Iraq, Trypanosoma lewisi was found in 7 (7.07%) of 99 R. rattus and in 5 (17.86%) of 29 R. norvegicus, while Trypanosoma musculi was found in 4 (3.80%) of 105 M. musculus and this is the first record of this trypanosome from rodents in Iraq [21]. In addition, rodents can harbor many different protozoan and helminthes endoparasites of public health; a rare reports of human infections with, Sarcocystis sp. [7] and Cysticercus fasciolaris [33], Hydatiosis and numerous papers on Hymnoleiasis.

However, little had been documented on the aspect of rodent parasites of both zoonotic and nonzoonotic in the literatures Iraq with only a few notable investigations in the past on such as Senekji (1940); Almorshidi 2001; Al-Awsy (2005); Jawdat and Mahmoud (1980); Al-Barwari et al. (1987) and Mahmoud (1974) who reported in ratsGiardia muris 16.2%, Chilomastix bettencorti 6.3%, Tritrichomonas muris 56.8%, Entamoeba histolytica 8.1%, E.coli 10.8%, Eimeria sp 4.5%, H.nana 8.1%, H. diminuta 13.5%, Trichuris muris 2.7%, Aspicularis tetraptera 2.7%, Syphacia
obvelata 6.3% , Gongylonema neoplasticum 1.8% , Streptopharagus kuntzi 8.1% Pterygodermatitis
winbergi 3.6% , Moniliformis moniliformis 5.4% ; while in mice had recorded 12 species of intestinal
parasites Giardia muris 6.9% , Chilomastix bettencorti 11% , Tritrichomonas muris 42.5% ,
Entamoeba histolytica 19.2% , E.coli 10.9% , Eimeria sp 27.4% , H.nana 8.2% , H. diminuta 6.9% ,
Hydatigera taeniaformis 16.4% , Syphacia obvelata 11% , Aspicularis tetraptera 5.5% , Trichuris
muris 24.7% .

Molan et al. (1988) recorded from 9 different localities in Arbil area , Iraq ; from 232 rodents
trapped , 147(63.4%) were infected with Helminths . Among 105 mice 77 (73.3%) were infected with
Hymenolepis nana , in 15 H. diminuta , in 7 Metacestodes of Taenia taeniaformis , in 9 Aspicularis
tetraptera , in 20 Syphacia obvelata and Trichuris muris in 8 .Thirty four (34) of 99 rats were
infected with cestode , including H. diminuta in 31 and Mathevotaenia rodentium in 3 . eight (8) of 28 Rattus
norvegicus were infected with A. tetraptera.

Regarding to what has been said hitherto, we studied in present survey the internal parasites of
rodents in five districts in Baghdad known with high density of rodents and rat-man proximity as
recorded by Hasson ( 2009 , same author ) . An important aim was given to find Helminths and tissue
protozoan parasites with particular reference to those parasites represent a health threat to man
[13].

Materials and Methods

During 1990-1994 , 186 rodents collected in five residential district blocks with high density
& % , Kelani 52.2% prevelaent rodents such as Aljamhuiya 38.60% , Abunoas 45% , Karada 32.80
Saadon 50% ; traps were collected and transported to Baghdad endemic department. Rodents were
trapped alive; before killing ,caught rodents were anesthetized in plastic bags with chloroform to
control animal and for combing by brush to collect ectoparasites which preserved by 70% alcohol for
further studies ; then animals were dissected . A slide smears were prepared from the blood (thick
and thin) and internal organs, including spleen , heart , brain , muscles and liver (impression smears)
. The smears were prepared from all animals and were preserved and stained with standard Giemsa
stain and examined microscopically for the amastigote form of Leishmania and for cysts of
Toxoplasma gondii ; fecal & alimentary tract contents evacuated and examined directly by dissecting
microscope ; samples of eggs & Helminths preserved by 10% formalin; in addition to the centrifugal
flotation and sedimentation techniques were used according to Beaver and JUNG (1985) [8].

In this technique 2 grams of fecal sample and 30 ml of saturated NaCl (aq) solution were mixed to
prepare fecal emulsion. The emulsion then strained through a tea strainer into 15 ml conical
centrifuge-tube on which top a cover slip was placed. Centrifugation then done for 10 minutes at 1500 (r.p.m.), after which the cover slips were removed and placed on clean microscope slides and examined at X<sub>10</sub> magnification level. Sometimes it was necessary to confirm the identification by using the magnification level X<sub>40</sub> to visualize the internal structures of eggs or oocysts.

Sedimentation technique, on the other hand, was used to detect the trematoda eggs, an approximate 2gms of feces were weighed and put in a container with 40 ml of tap water. The mixture was stirred using a fork and then the fecal suspension was filtered through a tea strainer into another container. The filtrate was then poured into a test tube and allowed to stand for five minutes. The supernatant was then decanted carefully and the sediment was then re-suspended in 5 ml water and allowed to sediment for another five minutes. The supernatant was then discarded very carefully and the sediment was transferred to a slide which was then covered with a cover slip. The prepared slides were then examined under the microscope using the magnification level X<sub>40</sub> for identification of trematode eggs and X<sub>10</sub> for coccidian oocysts. The size of the eggs was measured using an eyepiece micrometer.

Recovered Helminths of nematode & larvae were identified after clearing in lactophenol; large worms were morphologically identified after single staining with Aceto - Alum Carmine solution; using valid references of Ohbayashi et al. (1972), Pinto et al. (1994) and Noor-Un-Nisa (2001). Sections of muscles and brains were examined microscopically for any cysts after staining with H&E. Overall and the prevalence of zoonotic & nonzoonotic parasites in each host species were calculated as a percentage of infected individuals and the total number of individuals examined.

Preserved samples re-examination microscopically conducted at Al-Drora veterinary hospital during 2008.

**Results**

Seven species of Helminths and five species of protozoa were found in commensal rodents under study (Table 1). Cestode species recorded highest prevalence (55%) with p and protozoa species respectively (Table 2). *R. norvegicus* endoparasits recorded highest prevalence (55%) than other rodents (Table 2 & Fig. 1 & 3); Meanwhile results showed zoonotic Helminths *H. diminuta* (12.5%), *C. fasciolaris* (9%) in *R. norvegicus*; *H. nana* (3.5%) and *Vampirolepis sp.* (2.6%) in *M. musculus* were highly prevalent, whereas zoonotic protozoa *T. lewisi* (5%), *Sarcocysts sp.* (4.1%) in *R. norvegicus* and *B. microti* (4.4%) in *R. rattus* showed highest prevalence under study. *T. gondii* and *Leishmania sp.* were not found in all rodents samples under study. Non zoonotic highly
prevalent endoparasites results showed that M. rodentium (2.3%) and T. musculi (2.3%) in R. norvegicus; S. obvelata (5.2%) and Trichuris sp. (3.5%) in M. musculus respectively (Table 1) & (Fig. 2). New records for Vampirolepis sp. (synonym of H. nana), B. microti and Sarcocysts sp.; whereas negative results revealed for diagnosis of T. gondii and Leishmania sp. which is was first experiment tried known in Baghdad.

Table (1): Occurrence of endoparasits (heminths and protozoa) in rats and mice.

<table>
<thead>
<tr>
<th>Parasite spp.</th>
<th>Rattus norvegicus</th>
<th>Rattus rattus</th>
<th>Mus musculus</th>
<th>Total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. nana</td>
<td>25 (7.3%)</td>
<td>0</td>
<td>12 (3.5%)</td>
<td>37 (10.7%)</td>
</tr>
<tr>
<td>H. diminuta</td>
<td>43 (12.5%)</td>
<td>15 (4.4%)</td>
<td>25 (7.3%)</td>
<td>83 (24%)</td>
</tr>
<tr>
<td>C. fasciolaris</td>
<td>31 (9%)</td>
<td>13 (3.8%)</td>
<td>0</td>
<td>44 (12.8%)</td>
</tr>
<tr>
<td>M. rodentium</td>
<td>8 (2.3%)</td>
<td>0</td>
<td>1 (0.3%)</td>
<td>9 (2.6%)</td>
</tr>
<tr>
<td>Vampirolepis sp.</td>
<td>7 (2%)</td>
<td>2 (0.6%)</td>
<td>9 (2.6%)</td>
<td>18 (5.2%)</td>
</tr>
<tr>
<td>S. obvelata</td>
<td>17 (5%)</td>
<td>6 (1.7%)</td>
<td>18 (5.2%)</td>
<td>41 (11.9%)</td>
</tr>
<tr>
<td>A. tetraptera</td>
<td>8 (2.3%)</td>
<td>0</td>
<td>2 (0.6%)</td>
<td>10 (2.9%)</td>
</tr>
<tr>
<td>Trichuris sp.</td>
<td>5 (1.4%)</td>
<td>2 (0.6%)</td>
<td>12 (3.5%)</td>
<td>19 (5.5%)</td>
</tr>
<tr>
<td>T. lewisi</td>
<td>17 (5%)</td>
<td>8 (2.3%)</td>
<td>4 (1.2%)</td>
<td>29 (8.4%)</td>
</tr>
<tr>
<td>T. musculi</td>
<td>8 (2.3%)</td>
<td>0</td>
<td>4 (1.4%)</td>
<td>12 (3.5%)</td>
</tr>
<tr>
<td>B. microti</td>
<td>8 (2.3%)</td>
<td>15 (4.4%)</td>
<td>6 (1.7%)</td>
<td>29 (8.4%)</td>
</tr>
<tr>
<td>Sarcocysts sp.</td>
<td>14 (4.1%)</td>
<td>0</td>
<td>0</td>
<td>14 (4.1%)</td>
</tr>
<tr>
<td>T. gondii</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leishmania sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

106
Table (2): Total occurrence of different parasite phyla in rodents collected.

<table>
<thead>
<tr>
<th>Parasite class</th>
<th>R. norvegicus</th>
<th>R. rattus</th>
<th>M. musculus</th>
<th>n.</th>
<th>Pearson Chi²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cestode</td>
<td>114 (33%)</td>
<td>30 (8.7%)</td>
<td>47 (13.6)</td>
<td>191(55%)</td>
<td>0.000 &lt; p</td>
</tr>
<tr>
<td>Nematode</td>
<td>30 (8.7%)</td>
<td>89 (2.3%)</td>
<td>32 (9.3%)</td>
<td>70 (20%)</td>
<td></td>
</tr>
<tr>
<td>Protozoa</td>
<td>47 (13.6)</td>
<td>23 (6.7%)</td>
<td>14 (4.1%)</td>
<td>84 (25%)</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>191 (55%)</td>
<td>61 (18%)</td>
<td>93 (27%)</td>
<td>345</td>
<td></td>
</tr>
</tbody>
</table>

Figure (1): Total occurrence of different parasite classes in rodents species.
Discussion

The diversity in rodent parasites under study, points to their adaptability as well as capability of
the host to support them. In view of the diversity and zoonotic endoparasites, and the impoverished
conditions prevailing in Baghdad districts where in R. norvegicus, in R. rattus and M. musculus
highly prevalent survive, rodents can readily facilitate parasite transmission to humans and other
susceptible animal hosts.

Heavy intestinal infection of rats & mice with zoonotic H. diminuta (24%) and H. nana (10.7%)
agreed with studies of Mahmoud (1974) who reported H. nana 8.1% and H. diminuta 13.5%, while
the present study disagreed with Al-Awsy (2005) who found low morbidity in rats (5.08%) and mice
(4.48%), this difference could be related to the concentrated sampling from heavy rodent infested
area parasitized with fleas ectoparasite and abundancy of beetles that accomplished as intermediate
host in their indirect lifecycles under study; beside that the high prevalence recorded could be
elucidate and correlated with high prevalence of human Hymnolepiasis with H.nana 17.9 % and 7% in
Baghdad & Alkhalis children (Al-Tae et al . 1998, Albaity 2000); in regarding to C. fasciolaris
(Strobilocercus) Hydatigena type larval infection of Taenia sp. or probably of Taenia taeniformis of
cats which mostly collected from peritoneal or thoracic cavity of animals in this study agreed with Kamiya et al. (1987) who related this infection in R. rattus belongs to adult tape worm Taenia sp. mostly; this is a first recording mentioned this type in Iraq. The study recorded for first time, the prevalence of the zoonotic protozoa B. microti in Baghdad rats (4.4%) in R. rattus; T. lewisi prevalence results agreed with Molan and Hussein (1988) & differ in hosts only which could be due to the tick geographical distribution and host individual variation; 4.1% Sarcocystis sp. cysts were diagnosed from muscular tissue of R. norvegicus under study, which was lower than what O’donoghue (1987) who detected tissue cysts of Sarcocystis in the skeletal muscles of 16% 40 wild rodents of Indonesia, this could be attributed to scanty samples prepared from tissues in this study. Negative results for diagnosis obtained for T. gondii and Leishmania sp. shared with the study of Kia et al. 2001 in Iran; nevertheless the trail considered as first experiment tried to detected these parasites due its huge public health importance [18].

Regarding non zoonotic endoparasites highly prevalent, M. rodentium (2.3%) and T. musculi (2.3%) in R. norvegicus while S. obvelata (5.2%) and Trichuris sp. (3.5%) in M. musculus were recorded respectively. These results agreed generally with references mentioned previously; New records of Vampyrolepis sp. (synonym of H. nana) under study brought an attention to this genus which is still arguable with genus Hymenolepis Weinland, 1858 and needs more investigations in Iraq.

The author is not aware of any other work on new records of B. microti and C. fasciolaris (Strobilocercus) Hydatigena type larval infection of Taenia sp. in rodents species in Baghdad area.

Acknowledgments

I would like to thanks all Dr. s Kadhim Abd Alshahib (recently FAO coordinator); Nawal Abd Alrazak; agriculture engeeneer Safia Kaky Pera Abd; & all officers in Baghdad department of endemic diseases in particularly Abd- Alhussain Alshamary. Great gratitude’s offers to Dr. Samer Alwan direktor of Aldora veterinary hospital & Dr. Bushra Hazim for laboratory support and assistance.

References


111

