ABSTRACT
The current research consist of five chapters; First chapter is dealing with the significance of the research which is within the study of the engineering board design through movement mechanism which is harmonized with movement mechanism of human body that used to develop engineering board action performance in which enrich the designers and the researchers. The problem of the research is summarized in the response on the coming two questions: Is there any relation between dynamic performance in the system of engineering board design and functional performance? Is there any harmony...
between the design of dynamic performance mechanism of engineering board which harmonized with the movements of human being body? The research aimed at discovering the efficiency in the design of engineering board dynamic system and its relation with functional performance. Then the identification of the limits of the research. The second chapter includes theoretical frame which consists of three categories: first includes engineering board and its types and form and its component element, second category deals with the function and the dynamic performance of engineering board, third category is dealing with dynamic system in the engineering board.

The third chapter is dealing with the procedures of the research which are represented by the society and the sample of the research which is included the sample of the research which is engineering board that used for designing the maps, design pictures regarding architectural and technological engineering which are used by the industrial designers and decoration designers. Three sample are chosen, and the researcher adopted descriptive method in analyzing the sample of engineering board. The fourth chapter includes an analysis for the selected samples. The fifth chapter displayed the results of the research, then finalized by lists of references and abstract in English language.

أهمية البحث:

تكمن أهمية البحث في دراسة تصميم البوورد الهندسي من خلال الالية الحركة بما يتناغم مع الالية الحركة للجسم البشري المستخدم لتطوير الفعل الادائي للبوورد الهندسي بما يغني المصممين والباحثين.

مشكلة البحث:

بالنظر لأهمية البوورد الهندسي باعتباره أداة تُعتمد في عملية تحويل الأفكار والتصورات إلى ما يجعله قريبا للمدرك الحسوي للتصميمات الأولية، بما ان الوقت الذي يستهلكه المصمم خلال العملية التصميمية باستعماله طويلا يتوجب ان يكون تصميم البوورد يراعى فيه الشكل والأداء باعتماد المفاصل الحركية له بحيث
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإداء الوظيفي

شعبة علاء الدين درويش لطفي البكري

يكون هناك عملية تناغم ما بين الاداء الحركي لجسم المستخدم اليات الحركة في البورد.

لذا ارتأت الباحثة الاجابة عن التساؤلين الآتى: -
هل توجد علاقة ما بين الاداء الحركي في نظام تصميم البورد الهندسي والإداء الوظيفي؟
هل هناك توافق ما بين تصميم اليات الاداء الحركي للبورد الهندسي بما يتلائم واليات حركة جسم المستخدم؟

ههد البحث:
يهدف البحث الحالي الى الكشف عن الفاعية في تصميم النظام الحركي للبورد الهندسي وعلاقته بالإداء الوظيفي.

حدود البحث:

تحديد المصطلحات:

النظام الحركي: من خلال التعريف وجدت الباحثة ان مفهوم (النظام) قد تم الإشارة له بشكل عام ولم يتناول ما يتعلق بمفهوم النظام الحركي للبورد الهندسي، لذلك ستقوم بتحديد تعريف اجرائي للنظام هو: وسيلة تعتمد لإنجاز عمل ما في مجال الرسم الهندسي للتعبير عن أفكار غاية في الدقة، ويتميز بوجود نوع من الاداء الوظيفي الذي يتوافق مع اليات حركة جسم الإنسان (المستخدم).

حركة الاداء: - عرفها سكوت: ان الحركة على اختلافها قوى مثيرة للانتباه وفعل ينطوي على التغيير وال الزمن هو العامل الاهم في هذا التغيير، وردود الأفعال

Movement
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإداء الوظيفي

شعبة علاء الدين درويش لطفي البكري

عليها محسوبة او على هيئة احاسيس وانفعالات (1) بينما عرفها (البرز) "بأنها بداية
الارتباط بالنائب أو المتحرك وانها عمليات دافعة تقع ضمن عمليات سحب حركة عين
المتلقي ودفعه تجاه المسارات داخل العمل التصميمي (1) كذلك عرفها نجم عبد
حيدر "بنها بعد عضويا داخل في صميم التشكيلات الفنية التي لا يمكن ادراكها الا
من خلال تفاعلها بذلك البعد العضوي" (1) بناء على ذلك لم تجد الباحثة تعرفها بثلاثم
مع اجراءات البحث الحالي ذلك ارتأت بتحديد مفهوم الحركة اجرانياً كما يأتي: (بنها
ضد السجون من خلال نواتج صراع التمثيلات التي يحق مباعها في الزمان
والسكان بالاعتماد السرعة والاتجاه في حركة البورد الهندسي لتمثيل المتغير في الكم
والكيف والمكان والوضع والممثل بالمستخدم (User) على وفق اليات جسمه، ويتم
ذلك عن طريق قوى مثيرة للانتباه.)

الفصل الثاني الاتجاه النظري

المبحث الأول

- البورد الهندسي اثناءه وأشكاله وعناصره المكونة له (2):

على الرغم من ان القرن العشرين شهد قفزات نوعية صناعية وعلمية وقد
شملت مبادئ القرن العشرين اجهزة بديلة عن البورد الهندسي ومنها ال
الاوتوكات، الفوتوشوب) الا ان الحاجة للبورد الهندسي التقليدي بقيت مستمرة الى
يوفو هذا بكافة اثناعه وعلى النحو الآتي (2):

(1) (سكوت، روبرت جيلام : اساس التصميم، ترجمة محمد محمود يوسف،
دار النهضة مصر للطبع والنشر، القاهرة، 1980، ص 47).

(2) (-----، وثين: التصميم، بغداد، 1997، ص 18).

(3) (نجم عبد حيدر: التحليل والتركيب للعمل الفني المعاصير، اطروحه دكتوراه
مقدمة إلى كلية الفنون الجميلة، جامعة بغداد، 1996، ص 94).
تصميم النظام الحركي للبورد الهنديسي وعلاقته بالاداء الوظيفي

شعبة علاء الدين درويش لطفي البكري

أولا : - البورد الهندسي الثابت :-

يتكون البورد الهنديسي الثابت ما بين الميكانيكي(اليدوي) والهيدروليكى، ويوجد نوع كهربائي الا انه قليل التنوال حيث انسرع يكون باهضا، فالبورد الهنديسي الميكانيكي يقتصر عمله في حالة حركته على الاستخدام اليدوي فحسب من خلال استخدام عتلت خاصه بذلك تحتوي على نوابض أو كلابات ويتم تثبيتها باستخدام مسامير لولبية معدنیة تعتمد على (الصاموله) في التثبيت. الشكل (1)،(2) من البوردات الثابتة.

تتعدد انواع ما بين البورد الهنديسي الصغير والكبیر، ويتصف بنائه بالعناصر التالية:

1 - قاعدة حديدیة تحتوي على مفاصل تسمح له بتغيير ارتفاعه

2 - تم ربط اجزائه بالمسامير اللولبية المعدنیة المرتبطة بالصامولة حيث خلو من اي تداخل يعتمد على اللحام.

وفي بعض البوردات الهندسیة الیدویة تكون قاعدة البورد الهندسی مرتبطة بعض اجزاءها بالحام.

الشكل رقم (1) لوحة الرسم مع الماكنة (M D F).

3 - اللوحة التي تصنع من مادة الميلامین او ().

4 - تختلف قیاسات البورد الهنديسي الصغير عن البورد الهنديسي الكبیر الميكانيكي والكهربائي بما يلي :

أ - ا بعاد لوة البورد الهنديسІ الصغیر هي 100 – 70 سنتیمتر في حين لوة البورد الهنديسي الكبیر هي 2 متر في 120 سنتیمتر

ب - يتحرك البورد الهندسی الميكانيکي بحركات محدودة تقتصر على الصعود والنزول للوة، واليمن واليسار للمسطرة

ج - تثبیت زاوية الميل حسب الحاجة

5 - تختلف قیاسات البورد الهندسی الهیدرولیکی عن الميكانيکی بان البورد الهیدرولیکی والكهربائي أكبر حجما من الميكانيکی.

6 - تستخدم عتلات يتم التعامل معها عن طريق استخدام القدم بالضغط عليها لتغيیر اتجاه لوحة البورد الهندسی بزاوية مقدارها 360
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإجاء الوظيفي

شعبة علاء الدين درويش لطفي البكري

ثانيا: البورد الهندسي المتحرك:

- يستخدم البورد الهندسي المتحرك شريحة كبيرة من المختصين ولا سيما الطلاب لسهولة حمله ونقله من مكان إلى آخر ويفتاز بال مواصفات التالية:

1- يشترك في جميع الصفات الشكلية التي تم ذكرها في البورد الهندسي الثابت إلا أنه يختلف عنه فقط في خفة وزنه وسهولة حمله وصغر حجمه.

الشكل (2) بورد هندسي ثابت هيديرويكي

2- لا يحتوي على المساند التي يحتوي عليها البورد الثابت في حين أنه يكتفي بمساند صغيرة يمكن تغيير حركتها حسب الطلب لتغيير زاوية الوحة الرئيسية للبورد الهندسي، ويجعو المساند الصغيرة الصغير المثبتة على مثبتات للمستشعر بانواعها لها قابلية الحركة صعودا ونزولا وبيمينا ويسارا. كما تحتوي خلفيتها على عناصر لتغيير حركتها حسب حاجة المستخدم.

- الإجزاء المكونة للبورد الهندسي

- لوحة الرسم (Drawing Board): تصنع لوحة الرسم من الخشب الأبيض.

ويجب أن تكون ذات سطح جيد ناعم خال من النتوءات ولهذا فهو يصنع من مادة الميلامين أو DMF الصناعي لتصعح الحافة اليسرى من اللوحة في بعض البوردات من خشب الصنوبر كي تقاوم فترة طويلة ويجعو أن تكون هذه الحافة مستقيمة وملساء لزيد في دقة الرسم وتساعد مسطرة الحرف T بالأنزلاق عليها بسهولة. يمكن استعمال المنضدة
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإداء الوظيفي
شعلة علاء الدين درويش لطفي البكري

العادية كلودة رسم إذا كان سطحها جيدا وحافتها اليسرى مستقيمة، يوصى بوضع ورقة اضافية تحت ورقة الرسم للتخلص من صلابة سطح المنضدة. (4)

- مسطرة الحرف T - تستعمل هذه المسطرة لرسم الخطوط الأفقية وكدليل لحركة المثلثات، وتنطلق من الرأس أو العارضة والمسطرة ويجب أن يكون ربط الرأس بالمسطرة بشكل محكم جدا بحيث لا يحدث فيها رخوة عند الاستعمال ويجب أن تكون الحافة الشاغلة للمسطرة مستقيمة، وإن لا تكون الحافة الداخلية للعازفة محدبة.

- قاعدة البورد الهندسي في البورد الثابت والذي قد يكون ميكانيكي، هيدروليكى، أو كهربائي.

- كما يحتاج المستخدم للبورد الهندسي إلى مجموعة من الادوات لاتمام عمله على سطح البورد الهندسي وحسب حاجته والتي تشمل كل من:

 (Triangles) - 1
 (Scale) - 2
 (FrenchCurves) - 3
 (Instrument) - 4

(4) (عبد الرسول عبد الحسين، الرسم الهندسي، وزارة التعليم العالي والبحث العلمي/ الجامعة التكنولوجية، طبع الجامعة التكنولوجية مركز التعريب والنشر، بغداد 1982، ص 10)
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإداء الوظيفي
شعبة علاء الدين درويش لطفي البكري

5 - ورق الرسم (6)

أهم طرق تربط المستخدمة في البورد الهندسي: -
هناك طريقتان رئيسيتان لعمليات الربط في البورد الهندسي وهما كالتالي:

1. الربط الثابت:
 أ- الربط غير القابل للفك مثل اللحام
 ب- الربط القابل للفك

2. الربط المتحرك: وتستخدم في البورد الهندسي تبعاً لوظائف الأجزاء المترابطة
 ومنها:
 أ- طريقة الربط والمتمفصلة في محور معدني
 ب- طريقة ربط الأجزاء من خلال عتلة معدنية:

المبحث الثاني
يعتمد البورد الهندسي في أدائه الوظيفي على التنوع في حركات الاتجاهات وذلك لتحقيق انجاز الأفضل في عملية تنفيذ التصميم والرسوم التي يحتاجها المصمم حسب التنوع في الاختصاص.

(6) عبد الرسول عبد الحسين ، الرسم الهندسي ، وزارة التعليم العالي والبحث العلمي ، الجامعة التكنولوجية ، طبع الجامعة التكنولوجية مركز التعليم والنشر ، بغداد 1982 ، ص 13 / 25.
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإدارة الوظيفية

- الوظيفة والإدارة الحركي للبورد الهندسي :-

بدأت الفكرة في عملية تصميم الأجهزة والمعدات التي تسهل مهمة الإنسان في تنضيجة موجات من حيث الكم والنوع منذ بدأت لدى الإنسان القدرة فكرة التمدد وإنشاء القرى التي دفعت إلى اختراع العجلة ومن ثم اختراع دولاب الفخار الدوار ... ودفعت هذه الاكتشافات التي بدأت منذ أن بدأ الإنسان تنشيط النبالة الفكر لديه منذ أقدم العصور واستمرت إلى يومنا هذا وإن كل فكرة لا بد أن تبدأ ب(عملية التخطيط للوصول إلى الهدف، تدرك مسبقاً بالعقل ويتم تحقيقها بوسائل مادية مختلفة) (1) ... وما أن البورد الهندسي هو من بين الأجهزة التي تم التخطيط لصنعتها مسبقاً في العقل ومن ثم تحقيقها بوسائل مادية مختلفة فإنها مستمث جهازاً له غاية وظيفية لا يهتم بها بالرغم منها تأسس المصمم في تنفيذ تصميمات لجميع مفاصل الحياة؛ الهندسية منها والبزيكانيكية، الكهرلابائية وغيرها، إذ (يتملك أي عمل تصميمي غرضاً أدى إلى ابتكره ويقاس نجاحه بدرجة الإنتاج التجريبي لذا الغرض) (2) حيث أن الأغراض والأهداف والغايات هي الدوافع المؤدية إلى عملية التصميم لتحقيق الوظيفة أو أن يستخدم الجهاز لتوظيف متعددة في أن واحد (وهذا يعني أن لكل تصميمهما كان نوع غرضاً أو هدفاً وكمية قيمة التصميم في الغرض الذي يؤديه والذي يطلق عليه الوظيفة ومن خلال هذا المنطق تظهر لنا الوظيفة هي النوات التي تبدأ منها عملية التصميم لأي منتج) (3) فالتصميم الصناعي للبورد الهندسي شاهد شان الكثيي (من الإشراق المصغرة لسكتيوس) أن الوظيفة هي الفائدة المعينة التي يحققها الشيء (3) فالفائدة التي يحققها البورد الهندسي مرتبطة بالنظام الحركي له من خلال التوزيع المتقن لجميع

(1) إسماعيل شوقي، الفخار والتصميم، عالم الكتب، مطبعة العمرانية، القاهرة، 1999، ص 5.
(2) وينة، إيهاب محمد، الحركة الحديثة في العمارة، رسالة ماجستير غير منشورة، جامعة بغداد، كلية الهندسة، 1991، ص 7.
(3) أبو هنطش، محمود، مبادئ التصميم، الطبعة الثالثة، دار البركة للنشر والتوزيع، عميان ، 2000، ص 36.
(4) روبرت جيلام سكوت، أسس التصميم، ترجمة عبد الباقي محمد إبراهيم ومحمد محمود يوسف، دار نهضة مصر للطباعة والنشر، القاهرة، 1980، ص 7.
تصميم النظام الحركي للبورد الهندسي وعلاقته بالاداء الوظيفي
شعلة علاء الدين درويش لطفي البكري

ما فاصلات الحركة التي تتناسب مع طبيعة إدانته وفق حالة الانقسام مع طبيعة الحركة في مفاصل الجسم الإنساني للمستخدم (ولكن صحة استخدام ومبرور الزمن أصبحت الإداة الجيدة الصنع تبع على الفخ واعتزاز له، وتواجدت بذلك الملائمة الوظيفية) (1)

البحث الثالث

- النظام الحركي في البورد الهندسي: ت تعد الإجهزة المصنوعة ولا سيما البورد الهندسي ما بين الثابت والتحرك فالحركة في البورد الهندسي لها وظيفة تسهل مهمة الإضاء لتقنين حركة المنجز في البورد الهندسي الثاني كما تعد الحركة صراعا بين الأضداد حيث أن من الديهي تختلف القوى ما بين الانتقادات باعتماد المبتد الفيزيائي المعروف (إن لكل فعل رد فعل) حيث أن هذه النظرية الفيزيائية تشتمل جميع النظام الكوني ضمن التوازنات تبنى عليها سياقات حركة الطبيعة كحركة الإقلاك السماوية التي تدخل فيها عوامل عدة لا تتعدى كونها فيزيائية منها حالة التجاوب في الاقتباس المختلفة ومتنافر في النشاط المغناطيسي كما ان هناك حركات لا يحدث فيها التداخل الفيزيائي كالحركات الوهمية ولذا يمكن تصنيف الحركات على النحو التالي:

1 - حركة حقيقية (فيزيائية) أي أن المتحرك تصل فيه حركة حسية فعلية.
2 - حركة وهمية (جسدية) (من شئها اثارة احاسس ديناميكية تستخدم وسائل من شئها اثارة احاسس بالتغيير المكاني للشيء مع الاستمرارية لهذا التغيير) (11).

تنوع الحركة يتضمن الاداء الوظيفي للبورد الهندسي، فهناك دوافع حركية مختلفة بعضها دوافع ميكانيكية وبعضها الآخر هيدروليكية.... الخ، وكل نوع من هذه

(1) (الكبيسي، محمد محمود رحْم، نظرية الزمان في فلسفة الغزالي رحلة مجستير غير منشوره مقدمة إلى مجلس كلية الآداب، فلسفة الفلسفة جامعته بغداد 1983 ص 48).
(11) (رياض، عبد الكريم التكوين في الفنون التشكيكية، دار النهضة العربية للنشر القاهرة 1974 ص 297-298).
تصميم النظام الحركي للبورد الهندسي وعلاقته بالاداء الوظيفي

الأنواع يساهم في اداء وظيفي مختلف عن الاداء الوظيفي الآخر والاختلاف
الوظيفية يتبع خطة لتكون الحركة إلى غرض ثبوتية ما إذا كانت الحركة لا
تعتبر منهجًا قصدياً ستتحول الحركة إلى غرض ثبوتية ما إذا اعتمدت الحركة
منهجًا قصديًا فإنها لا بد أن تعتمد على النظام الذي (يمكن أن يكون حراً ويمكن
ان يكون مشروطًا في البعدين يكون النظام الشكلي حراً عندما يكون قد توازن مع
المنجز ويكون مشروطًا عندما توازيه من جهة أو جهتين أو أكثر بالوظيفية
وعندها ستستورد عمليات التنظيم، تشغيل الوظائف واهدافها ويكون ذلك وظيفاً في
التصميم الصناعي حيث أن الشرطية هنا ظاهرة بقوة تساوي كل الوظيفة الناتجة
وتشتت هذا نسبياً في التصميم ذوالبعدين، ولا يعني ذلك انعدام الشروط ولكن
بحالات (١) معينة ترتبط بنوعية الاداءي ونوعية الوظيفة. فالحركة المصممة بدقة
التي تراعي دقة الاداء الوظيفي لابد ان تكون لها ثمارًا في الانجاز المصممي
لتتحسن الاداء ولهذا يجب أن تتناغم الحركة في الجهاز المصنوع مع الحركة لجسم
المستخدم كما يجب أن تتناغم الحركة مع اختلافات الاداء واختلافات الاتجاهات
التي تقوم بها الجهاز المصنوع يميناً ويساراً واثبت العلى والأسفل الخ
كل هذه الاتجاهات يمكن تسميته بالحركة إلا ان الحركة لا بد ان تحتاج الى
وسائل لتفعيلها ونقلها باستخدام الخصائص الميكانيكية أو التوظيف الزيتي في نقل
الحركة هيديروكالية أو التوظيف الهوائي في نقل الحركة نيوماتياً .

- وسائل الإدارة المركبة

- وسائل نقل الحركة بالسبيور: يمكن استخدام العجلات المسالسة والعجلات المسننة
وسامعهما المساعدة كالسبيورا والسلاسل في تصميم انواع معينة لأجزاء محددة
من بعض البوارد الهندسية لتحريك الهيكلي السائد للبورد أو اللوحة إلى جهات
مقدمة حسب الضرورة كما ويمكن استخدام تلك العجلات في تحريك الملفقات
كالمسائل أنواعها المختلفة الخ. حيث يمكن استخدام هذه الاتجاه او بعضها

(١) (اليزاز ، عزام عبد السلام ، التحليل والتصميم ، وزارة الثقافة والإعلام ، بغداد ،
١٩٩٩ ص ٤٤)
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإداء الوظيفي

نبذة عالم الدين درويش لطفي البكري

حسب الحاجة أو ما تقتضيه الضرورة في تصنيع البوردات الهندسية الثابتة والتي تستخدم لأغراض تصميمية لتصميم المشاريع الكبيرة أو ما شابه. ونجد هذه الوسيلة موجودة في بعض أنواع البوردات الهندسية حيث يمكن بواسطتها تغيير ميل زاوية سطح البورد.

- أنظمة التحكم بحركة أجزاء البورد الهندسي

تنقسم أنظمة الحركة في البوردات الهندسية إلى ثلاثة أنواع أساسية:

1- نظام الحركة الميكانيكي (اليدوي)

حركة المسطرة: T

تعدم مسائد المسطرة T للوحدة البورد الهندسية في حركتًا على الأيدي إذ تتألف بعض مسائد المسطرة T للوحدة البورد من أنظمتين للحركة، فالنظام الأول يتكون من عتلة معدنية مثبتة في مسند المسطرة T للوحدة البورد تدخل في تجويف يقع في الجزء الفارغ الأعلى لسطح لوحة البورد الهندسية (سكة معدنية) وتحرك المسطرة T، كما في الشكل (3) بواسطة اليد ويثبت عن طريق عتلة يدوية تقع جانب من المسطرة T. وهذا النظام يستخدم لتمكين المسطرة T من الحركة إلى اليمين أو اليسار، وفي حالات أخرى إلى الأعلى والأسفل حسب احتياجات المستخدم.

الشكل (3) المساطر الملحقة مع المسطرة T

والنظام الثاني يتكون من نقطتين تفصل وتحوي على الجزء الدائرى الذي يحتوي على أرقام الزوايا وتحوي كل نقطة تفصل على زر أو عتلة مسولة عن فقر وتحريك هذا المفصل وهذا النظام يمكن المستخدم من تغيير الزاوية وكذلك من تغيير اتجاه المساطر المتصلة إلى الأعلى أو اليسار، وكذلك إلى اليمين واليسار حسب حاجة المستخدم.

الشكل (4) المساطرة T مع المساطر الملحقة
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإلقاء الوظيفي
شعبة علاء الدين درويش لطفي البكري

2- نظام الحركة الهيدروليكية

3- النظام الكهربائي

مؤشرات الاتجاه النظري

1- تصنع لوحة البورد الهندسي في بعض البوردات الهندسية من مادة الميلامين أو من MDF.

2- تصنع قاعدة البوردات الهندسية من مادة الافولاذا المقاوم للصدأ وكذلك من النيكل.

3- ان أجزاء البورد الهندسي ذات ابعاد تلاعة وإيجاد اجزاء جسم المستخدم.

4- تتحرك أجزاء البوردالهندسي بزوايا تلاع综合性 حتي يحول مدي حركة في العمود الفقري وجزء جسم المستخدم.

5- تعمل أجزاء البورد الهندسي المتحركة مع بعضها بوضوح تعزذه متطلبات حاجة المستخدم والوسيلة المستخدمة، وحسب نوع اللورد المستخدم.

6- وجود مفصل بين سطح لوحة البورد وقاعدة حتي تسمح لسطح البورد من النوع الثابت بالارتفاع والانخفاض لمديات جددها المستخدم، ووجود ذراع أو مقبض في قاعدة البورد لتغيير زاوية ميل سطح البورد.

7- ان بطريقة لحام بلواء الكهرباني دور في توفير القوة والمتانة لبياكل البوردات الهندسية وخصوصاً أجزاء اللوحة الشابطة منها، أما لوحة البورد المتحركة فالمفاصل المماثلة بمسامع الملفس والصامولة والمفاصل والتراكب والقابلية.

8- توفير حرية الحركة لإجزاء لوحة البورد.

9- استخدام طلاء الكروم والطلاءات الدهنية لتوفير الحماية لإجزاء المعدنية من الظروف الخارجية في قاعدة البورد وفي إجزاء القاعدة.

10- للالمينيوم إمكانية مظهرية يمكن توظيفها جمالياً كالسطور الملموس والخضير المعدني المميز والذي بالإمكان التحكم في لونه من خلال توزيع نسب سبائك، بالإضافة إلى محافظة هذا المعدن على هذه الخواص حتى بعد تعرضه للمؤثرات البيئية المختلفة.

11- إن لimbus حالة اللوحة دوراً وظيفياً فاعلاً في عملية انزلاق وحركية المسطار عليه لاتمام الوظيفة المرجوة منه.
الفصل الثالث

إجراءات البحث

اعتمدت الباحثةالمنهج الوصفي في تحليل العينة للبورد الهندسي ابتداء من مرحلة التخطيط الأولي مرورا بمرحلة التصميم وصولا إلى النتائج النهائية وهي كما يلي:

1 - مجتمع البحث وعينته: شملت عينة البحث البوالد الهندسية التي تستخدم لأغراض تصميم الفرائط ورسوم التصاميم المعنية بالهندسة المعمارية والهندسة التكنولوجية التي يستخدمها المصممون الصناعيون وصممون الديكور. وتم اختيار ثلاثة نماذج.

2 - أداة البحث: استخدمت الباحثة استمارة تحليل لتحديد المحاوري الخاصة بتحليل العينة كأداة للبحث بغير التعرف على خصائص ومواصفات عينة البحث وقد تم عرضها على بعض الخبراء المتخصصين في المجال التصميمي واتفاق الخبراء على جميع فقرات استمارة تحديد محارير التحليل.

3 - صدق الأداة: لغرض التأكد من رائعة الأداة وصحتها تم عرض استمارة تحديد محارير التحليل على عدد من الخبراء المتخصصين من ذوي الخبرة في مجال التصميم وبعد ابديتهم من حيث صلاحية الفقرات وتشخيص ما يحتاج منها إلى تعديل تم إجماعهم على صلاحية فقرات الاستمارة.

تحليل العينة (1) الوصف العام للنموذج

<table>
<thead>
<tr>
<th>الإعداد</th>
<th>اللوحة</th>
<th>النوع</th>
<th>للوحة</th>
<th>البورد الهندسي</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>بضاء</td>
<td>ثابت</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>القاعدة ذات لون نيلي</td>
<td></td>
</tr>
</tbody>
</table>

1- هيئة البورد الهندسي وعلامته بالإدای الوظيفي: وهو بورد هندسي من النوع الثابت وهميولوجي، لوحة البورد الهندسي من مادة الميلامين ذات لون أبيض والتي تتمتع بالسطح الاملس السهل الناعم وابعاده هي 1متر × 0.5متر ونصف وهو ذات حافة
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإداء الوظيفي

شعلة علاء الدين درويش لطفي البايري

سقيفة أيضاً. أما قاعدة الـ بورد فهي عبارة عن كتلة من مادة الحديد ذات مقطع مربع الشكل، مطلي بالدهان ذات اللون الالماني بطرق الصلب الكهربائي، ويضم في داخله الأجزاء التي يمكنها إدخال وظيفته بطريقة هيبروليكية، حيث يوجد فيه صراعان أسفل وخلف اللوحة لخدمة لتغيير زاوية الميل اللوحة والثاني لتغيير اتجاه اللوحة حيث يمكن تغيير اتجاهها بمقدار 360°، كما توجد دوامسة في أسفل القاعدة والتي يمكن الضغط عليها بواسطة القدم لتغيير ارتفاع اللوحة.

لجنة الخبراء : 1 - 1 م. د. لبنى عبد الزاق - اختصاص تصميم صناعي.
2 - م. د. نوال محسن محمد - اختصاص تصميم صناعي.
3 - د. هدى محمود عمر - اختصاص تصميم صناعي.

2 - نظام الحركة في الـ بورد الهندي:

يـ اـ لـ هذا الـ بورد الهندي بالنظام الهيدروليكية ويمكن تغيير ارتفاع مستوي سطح الـ بورد بواسطة الدوامسة الموجودة في أسفل القاعدة وذلك بالضغط عليها بواسطة القدم، أما زاوية ميل الـ بورد فيمكن تغيير زاوية ميلها عن طريق الأ차ً الـ اذرع الموجودة في أسفل ظهر اللوحة، والذراع الآخر هو لتغيير اتجاه اللوحة والذي يمكن تغييره إلى 360° وتعمل هذه الازرع بواسطة النظام الهيدروليكية موجود داخل الهيكل الحديدي.

3 - اليـ حـ جسم الإنسان وعلاقتها بتصميم الـ بورد الهندي:

النظام الهيدروليكية المتبع في هذا الـ نموذج وسعة سطح الـ بورد يتيح حرية الحركة للمستخدم حسب حاجته بما يتلائم واللي جسم الإنسان حيث يمكن تغيير زاوية ميل اللوحة وكذلك اتجاهها أيضاً بواسطة الضغط والتحريك لأحد الـ اذرع الموجودة في أسفل ظهر اللوحة، كما ويمكن التحكم بارتفاع سطح اللوحة بواسطة الدوامسة الموجودة في أسفل القاعدة بواسطة الضغط عليها بالقدم.
العدد 61 لسنة 2011
318

4- الخامات وطرائق الربط المستخدمة في البرد الهندسـي: لوحة البرد الهندسـي مصنـة من مادة الميلانين ذات اللون الأبيض وجوءها كذلك مما يعطيها اللمـس الناعم لاتمام عملية الرسم عليها بسهولة ، أما القاعدة فقد استخدمت الحديد في صناعتها وقدتم صبها بالطريقة الكهربائية ، وقد استخدمت مادة المطاط في أسفل قاعدة البرد وذلك للمساعدة في عملية التوازن والثبات حيث يمكن تغيير ارتفاعاتها في حالة كون الارضية الموجودة عنها غير متوازنة ، كما وقد استخدمت مادة اللدئ وذلك بوضعها في نهاية الذراع الموجودة في أسفل ظهر اللوحة لتساعد في عملية السيطرة عليه عند تغيير الاتجاه أو في حالة تغيير زاوية ميل اللوحة لتكون مريحة لراحة اليد ، كما وقد استخدم المطاط أيضاً في الدواسة الموجودة في أسفل القاعدة وهي مزودة بأدغالة كي يمكن ثبات القدم عليها عند الضغط عليها لتغيير ارتفاع مستوى سطح ألبرد . ويعد هذا النوع من ألبردات الهندسية غالبة الثمن كما وان في حالة حدوث أي عطل فيه ، يكون من الصعب تصليبه وذلك اولا لعدم توفر المواد الاحتياطية لاجزائه وثانيا لصعوبة وارتفاع أجور تصليبه.

تحليل العينة رقم 2)الوصف العام للنموذج

<table>
<thead>
<tr>
<th>الابعاد العامة للمادة</th>
<th>النوع</th>
<th>اللون</th>
<th>البرد الهندسي</th>
<th>المنشأ</th>
<th>اللوحة بيضاء والقاعدة ذات لون أسود ثابت هيدروليكي</th>
</tr>
</thead>
<tbody>
<tr>
<td>متر × متر ونصف الماني</td>
<td>لوحة بيضاء والقاعدة ذات لون أسود</td>
<td>ثابت هيدروليكي</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1- هيئة البرد الهندسـي وعلاقته بالإذاعة الوظيفي:
: لوحة البرد الهندسـي البيضاء اللون مزودة بالمتحركات والمزودة بالألة التي تحوي على المسار التي يمكن استخدامها بإي اتجاه يريده المستخدم وايًا زاوية يريدها صعداً أو أدنى، بينهما أو يبرد وقاعدة ذات اللون الابيض تحتوي في أخذ جوانبها على ذراعات، كما يوجد في أسفل القاعدة وعلى امتداد القاعدة دواسة للقدم.
تصميم النظام الحركي للبورد الهنديسي وعلاقته بالاداء الوظيفي

2 – نظام الحركة في البورد الهنديسي: نظام الحركة في هذا البورد هو هيدروليك حيث يمكن تغيير زاوية ميل لوحة البورد الهنديسي بواسطة الذراع الموجود في إحدى جوانب القاعدة وذلك بتحريكها بواسطة الضغط عليها باليد، أما ارتفاع مستوى اللوحة فيمكن تغييره بواسطة الدوआة الموجودة في أسفل القاعدة والمتمد على طول القاعدة مما يكسبها السهولة في عملية الضغط عليها بواسطة القدم. كما وأن المصبرة يمكن تحريرها بواسطة عجلة دائريّة موجودة في احترود في أعلى لوحة البورد وضمن الأطر الموجود في أعلى اللوحة حيث يمكن تحريرها بمينا ويارا حسب الحاجة بالإضافة إلى ذلك يمكن تثبيتها في المكان المطلوب بواسطة ساق حسب الوضع ضمن هيكل المصبرة، كما أن المصبرة الملحقة موجودة فيها يمكن تحريرها بزوايا مختلفة واتجاهات مختلفة وكذلك يمكن تثبيتها بواسطة ساق حسب مكونة فيها لاتمام الوظيفة المطلوبة.

3 – نمط الإنسان وعلاقتها بتصميم البورد الهنديسي: في هذا النموذج هناك حرية واسعة للمستخدم حيث سهولة عملية تحريك المصبرة T و، كما وأن سهولة عملية تحريك ارتفاع سطح البورد وكذلك زاوية ميله وحسب حاجة المستخدم جميعها جاءت من مستندية والية جسم الإنسان المستخدم مما يعني راحة وسهولة العمل على هذا البورد، وكل هذا يتم بهدف من قبل المستخدم لاختيار الوضع المناسب للعمل عن طريق تحريك المصبر بيد، وتحريك لوحة البورد بواسطة تحريك الذراع الموجود في إحدى جوانب القاعدة، كما وان ارتفاع مستوى سطح البورد يمكن تغييره بواسطة الضغط على الدوآة الموجودة في أسفل القاعدة والتي تتميز بسعتها.

4 – الخماط وطرق الربط المستخدمة في البورد الهنديسي: لوحة البورد الهنديسي مصنوعة من مادة الميلانين الأبيض والصغيرة الفائقة، أما المصبرة فقد استخدمت اللدائن في تصنيعها وكذا في مادة الميلانين وتحتوي على مفاصل مزودة بعجلة من اللدائن يمكن تحريرها بواسطةها في الأوامر الموجودة في أعلى اللوحة والأطر الحاوي لهذا الأخدود هو أيضًا من مادة اللدائن وذكذ الصناعي أضا القاعدة فهي من الحديد والمطلي كهربانا باللون الأسود وقد زودت القاعدة بذراع من الحديد ويوجد في نهايتها مقسم من اللدائن يمكن السيطرة عليه في قبضة اليد عند تغيير زاوية ميل البورد. وفي أسفل القاعدة توجد الدوآة للتقدم لتحريك مستوى ارتفاع اللوحة وهذه متغطاة بالمطاط ذات الارحاد لكي تساعد في عملية ثبات القدم عليها عند الضغط عليها للتعامل مع البورد، في حين توجد الأخدود لترفع سطح البورد، كما يوجد قطع من المطاط في أسفل القاعدة لتساعد في عملية الثبات والتوازن العم لقاعدة البورد.
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإداء الوظيفي
شُمعل علاء الدين درويش لطفي البكري

تحليل العينة (3) الوصف العام للنموذج

<table>
<thead>
<tr>
<th>الأبعاد العامة للوحدة</th>
<th>المنشأ</th>
<th>النوع</th>
<th>البورد الهندسي</th>
</tr>
</thead>
<tbody>
<tr>
<td>122 سم × 80 سم</td>
<td>تركي</td>
<td>اللوحة بيضاء والقاعدة ذات لون أسود</td>
<td>ثابت ميكانيكي</td>
</tr>
</tbody>
</table>

1- هيئة ادارة الوظيفي : هذا النموذج يمثل البورد الهندسي اثاث الميكانيكي، وتكون من لوحة البورد الهندسي البيضاء اللون ذات اللمس الناعم لاتمام عملية الرسم عليه بسهولة الودقة المطلوبة وأبعاد هي متر × متر ونصف وذات جوانب ملساء، والقاعدة مصنعة من مادة الحديد والمتينة باللون الرصاصي بطريقة الطلاء الكهربائي.

2- نظام الحركة في البورد الهندسي: ان هذا البورد الهندسي ثابت يعتمد على النظام الميكانيكي (اليدوي) في اجزاء حيث يتم تحريك لوحة البورد الهندسي بواسطة مقبض موجود في أسفل اللوحة، وفي منطقة الاتصال بالقاعدة التي ترتبط باللوحة بواسطة مفاصل تربط اجزاء البورد بواسطة لوأب معدنية والمزودة بالصامولة وكذلك لوالب لثبيت الأجزاء المفصلية بلوحة البورد. اما القاعدة فثابتة.

3- الية جسم الإنسان وعلاقتها بتصميم البورد الهندسي: في هذا النموذج يمكن فقط تغيير زاوية ميل لوحة البورد حسب حاجة المستخدم مما يوجد بعض الصعوبات في عملية الإداء الوظيفي حيث لا يمكن تغيير ارتفاع مستوى سطح البورد وتحتتم على المستخدم إلى التحدث بوضوح خاصة مما قد يؤدي إلى اجهاد عليه في عملية الرسم عليه.

4- الخلاطوات وطرق الربط المستخدمة في البورد الهندسي: ان لوحة البورد الهندسي لهذا النموذج مصنعة من مادة الميلامين وقد توجد بودرات هندسية مشابهة له ولكن
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإداء الوظيفي

شعلة علاء الدين درويش لطفي البكري

اللوحة مصنوعة من مادة MDF، وذلك لتقليل الكلفة بالنسبة لسعر الباب للطلاب، أما قاعدة الباب الهندسي فهي من مادة الحديد والمطلية بالثاليد الكهربائي باللون الرصاصي، وقد استخدم الحام فيها حيث نجد في كل قاعدة الباب كربلو كما وتحتوي قاعدة الباب على اجزاء مطاطية لكي تساعد في عملية التوازن والثبات، وقد تم ربط لوحات الباب الهندسي بالقاعدة بواسطة اللحام في بعض الأجزاء وكذلك باللوالب المعدنية مع الصائمة.

نتائج البحث

1. قسمت اجزاء الباب الهندسي في العينات (1،2) بالعادة بثلاثة العمليات المتعلقة بالرسم الهندسي، أما بالنسبة للعينة رقم (3) فان مساحة سطح الباب اصغر من العينات الأخرى.

2. ان استعمال النظام اليدوي بالتحكم في تحرير اجزاء سطح لوحة الباب الهندسي في العينة (3) ملائماً لطبيعة عمل هذا النوع من البابات، ولكن لايمكن تغيير ارتفاع مستوى سطح الباب كالعينات الأخرى.

3. أن استخدم عملية الربط بطريقة لحام القوس الكهربائي للعينة رقم (2،1) في تجميع اجزاء قاعدة الباب كتطبيق ربط ثابتة وفر قوة ومتانته للهيكل القاعدة المعدنية في بعض اجزاءه.

4. استخدمت في تصنيع هيك للباب الهندسي في العينة (2،1) وصلات معدنية أكثر لتوفير متانته أكبر لهذا الباب كون اجزاءه متحركة.

5. ان استخدم طريقة المفصل الفلين والبرغي والصائمة كتطبيق ربط متحرك لأجزاء المستقرة لحالة الباب الهندسي في العينة (2) وفر حرية حركة جيدة لهذه الأجزاء.

6. استخدم مادة الحديد اليدوي في صناعة هيك قاعدة الباب الهندسي في العينة (3) عادة بالآثر السلبي عليها كون ان هذه المادة غير جيدة للمواصفات الميكانيكية في المتانة والصلابة ومقاومة الظروف المحيطة.

7. استخدم مادة البلاستيك في قاعدة الباب الهندسي في العينات (1،2) ملائمة للإداء الوظيفي لهذا النوع من البابات وذلك لمرورها وقابلية التمدد والانهاء الجيد لسطحها.

8. ان لوحات الباب الهندسي المستخدمة من مادة الميلامين في العينات (1،2) تمتلك نفس القياس بينما العينة (3) من مادة ال MDF بقياس اصغر.
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإداء الوظيفي
شعلة علاء الدين درويش لطفى البكري

11. ظهرت العينات (1,2) الملائمة الوظيفية وهي تعمل بالنظام الهيدروليكي بينما العينة (3) فهي تعمل بالنظام الميكانيكي.

12. عدم توفير الملحقات الكاملة للعينة رقم (1,3) كالمستمرة والمعدنة التي تستخدم في عملية الرسم.

13. إن قاعدة البورد ثابت الارتفاع في العينة (3) مما أدى إلى قصور هذا النوع من البوردات في عملية تغيير ارتفاع مستوى سطح لوحة البوردحسب الحاجة.

14-15. وجود المسطرة T العمودية على سطح البورد مع المسار الملحقة بها في العينة (2) بينما العينة (1), (3) لايحوي سطح لوحة البورد على مسورة T. من حيث الارتفاع في العينة (2) بواسطة الأخذود الموجود في أعلى الوحة والذي يحتوي على جزء معدني وكان في داخل سكة يتحرك ضمنها عن طريق تحيك المسطرة بواسطة اليد، بينما العينة (2) حركتها عمودية بالنسبة للمستمرة أما المسار الملحقة فتمكن تحريرها بأي اتجاه اوزاوية يحتاجها المستخدم.

الاستنتاجات

1- أن احتواء أجزاء البورد الهندسي للابعاد والزوايا الحركية الملائمة لأبعاد جسم المستخدم وإمكانية الحركة لديه وعليج، يسر عملية الإداء الوظيفي واحتياجات العمل ومتطلبات المستخدم المختلفة.

2- لتصاميم البوردات الهندسية أشكال تلبية المتطلبات الوظيفية في جعل كل جزء من أجزاء البورد الهندسي يؤدي الوظيفة المصممة من أجلها.

3- لمتانة الهيكل المعدني لقاعدة البورد الهندسي من خلال اعتمادها على قوة ومتانة طريق الربط المناسبة والمستخدمة في الهيكل.

4- استخدام الطلاءات الذهبية في تغطية الهياكل المعدنية لقاعدة البورد الهندسي مما وفر الحماية للمعدن ضد الصدأ والتأكل.
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإداء الوظيفي
شعبة علاء الدين درويش لطفي البكري

5 - جاءت تصاميم الشكل العام للبورد الهندسي الهيدرولوجي مصممة وفق أنظمة تنتمي بالتعقيد في كثرة الأجزاء المفصلية المتحركة و هذه الأجزاء لتفعی
المتطلبات الوظيفية الضرورية لتحقيق وظيفة اليد الحركي.
6 - بالاعتماد على الإداء الوظيفي واحتياجات العمل ومتطلبات الحالات المختلفة، قسمت إجزاء اليد العمليات الهندسية إلى إجزاء باب يعد وأجزاء حركة ملائمة لابعد، جنس الإنسان وأمكانيات الحركة بما يتناسب وحاجة المستخدم.
7 - تعطي تصاميم الهيئات العامة للوحة اليد الحركية البدنية الاحساس بالثبات والاستقرارية كونها مصممة بخطوط اقديم مستقلة.
8 - التحكم اليدوي في تحريك إجزاء لوحة اليد العمليات الهيدرولوجي الميكانيكي التربة في القاعدة ذات الربط الثابت يؤدي إلى عدم إمكانية تغيير ارتفاع سطح لوحة اليد.
9 - يمكن تقسيم النظام الذي تحرك به اليد الحركي الهندسي إلى ثلاثة انواع النظام اليدوي، النظام الهيدرولوجي، والنظام الكهربائي.
10 - الهيكل المعدني لقاعدة اليد العملياتي يعتمد على قوة ومتانة مواضع الربط.

المصادر العربية

1. أبو هنشش ، محمود ، مبادئ التصميم ، الطبعة الثالثة ، دار الريال للنشر والتوزيع ، عمان ، 2000 .
2. البزاز ، عزام عبد السلام ، التحليل والتصميم ، وزارة الثقافة والإعلام ، بغداد ، 1999.
3. روبرت جيلام سكوت ، اسس التصميم ، ترجمة عبد النباي محمد إبراهيم ، محمد محمود يمسف ، دار نهضة مصر للطباعة والنشر ، القاهرة ، 1980 .
4. رياض ، عبد الفتاح ، التكوين في الفنون التطبيقية ، دار النهضة ، العربية للنشر ، القاهرة ، 1974.
7. شوقي ، اسماعيل ، الفخار والتصميم ، عام الكتب ، مطبعة العمرانية ، القاهرة ، 1999.
تصميم النظام الحركي للبورد الهندسي وعلاقته بالإدارة الوظيفي

علي علاء الدين درويش لطفي البكري

8. عبد الرضوان عبد الحسين، الرسم الهندسي، وزارة التعليم العالي والبحث العلمي/ الجامعة التكنولوجية، طبع الجامعة التكنولوجية مركز التدريب والنشر، بغداد 1982.

9. الكبيسي، محمد محمود رحيم، نظرية الزمان في فلسفة الغزالي، رسالة جامعية غير منشورة مقدمة إلى مجلس كلية الآداب، قسم الفلسفة، جامعة بغداد، 1983.

10. ناجم عبد حيدر: التحليل والتركيب للعمل الفني المعاصر، اطروحة دكتوراه مقدمة إلى كلية الفنون الجميلة، جامعة بغداد، 1996.

11. ونا، أيوب محمد، الحركة الحديثة في العقيدة، رسالة ماجستير غير منشورة، جامعة بغداد، كلية الهندسة، 1991.