On Artin Cokernel of Dihedral Group D_n When n is an even Number

Hussein Hadi Abbas
AL-Kufa university
College of Education for Girls - Department of Mathematics
Email: msc_Hussien@yahoo.com

Abstract:
In this paper, we find the general form of Artin characters table $\text{Ar}(D_n)$, when n is an even number and the cyclic decomposition of Artin Cokernel $\text{AC}(D_n)$, when n is an even number such that:

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots \cdot p_m^{\alpha_m} \cdot 2^\beta,$$

where p_i are distinct primes for all $i = 1, 2, 3, \ldots, m$.

$$\text{AC}(D_n) = \bigoplus_{i=1}^{m} \bigoplus_{\beta=1}^{C_2}.$$

Introduction:

The abelian group of all Z-valued characters of a finite group G under the operation of pointwise addition over the group of induced unit characters form all cyclic subgroups of the group G (Artin characters), $\text{R}(G)/\text{T}(G)$ form a finite abelian group which is called Artin Cokernel of the group G. The problem of determining the cyclic decomposition of $\text{AC}(G)$ seem to be untouched. In this work, G is considered to be the dihedral group D_n when n is an even number. To do this work we must do the following steps:

1- we must know the rational valued characters table of the group D_n, $\equiv^* (D_n)$.
2- we must find Artin characters table of the group D_n, $\text{Ar}(D_n)$.
3- we must find the matrix which expresses the Artin characters of the group D_n in terms of rational valued characters, $M(D_n)$.
4- From (3) we must find the invariant factors matrix $M(D_n)$.
5- From (4) we can find the cyclic decomposition of $\text{AC}(D_n)$.

In 2000 H.R. Yassien [6] studied the cyclic decomposition of $\text{AC}(G)$ when G is an elementary abelian group. In 2002 H.H. Abbass [5] found $\text{Ar}(D_n)$. In 2006 A.S. Abed [2] found $\text{Ar}(C_n)$ when C_n is the cyclic group of order n. In this paper, we find $\text{Ar}(D_n)$ and we study $\text{AC}(D_n)$ of the non-abelian group D_n when n is an even number.

1. Some Basic Concepts:
 In this section, we shall give basic concepts, notations and theorems about matrix representation, characters and Artin characters, which will be used in the next sections.

Definition (1.1):

The general Linear group $\text{GL}(n,F)$ is a multiplicative group of all non-singular $n \times n$ matrices over the field F.

Example (1.2):

Consider the field of complex numbers \mathbb{C}, $\text{GL}(2,\mathbb{C}) = \{ A: A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}; a,b,c,d \in \mathbb{C} \text{ and } A \text{ is a non-singular} \}$

Definition (1.3):

A matrix representation of a group G is a homomorphism of G into $\text{GL}(n,F)$, n is called the degree of matrix representation T. In particular, T is called a unit representation (principal) if $T(g) = 1$, for all $g \in G$.

Example (1.4):

Consider the symmetric group S_3, define $T: S_3 \rightarrow \text{GL}(2,\mathbb{C})$ as follows:

$T((1)) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $T((1\ 2)) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$, $T((1\ 3)) = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}$, $T((2\ 3)) = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, $T((1\ 2\ 3)) = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$, $T((1\ 3\ 2)) = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$. T is a matrix representation of S_3 of degree 2.

Definition (1.5):

The trace of an $n \times n$ matrix A is the sum of the main diagonal elements, denoted by $\text{tr}(A)$.

Example (1.6):

Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\text{tr}(A) = 1 + 1 = 2$.

Definition (1.7):

Let T be a matrix representation of degree n of a finite group G over the field F. The character χ of degree n of T is the mapping $\chi : G \rightarrow F$ defined by $\chi(g) = \text{tr}(T(g))$ for all $g \in G$. In particular, the character of the principal representation ($\chi(g) = 1$, for all $g \in G$) is called the principal character.

Example (1.8):

The character χ of the matrix representation T in example (1.4) is of degree 2 and it is defined as follows:

$\chi((1)) = 1 + 1 = 2$, $\chi((1\ 2)) = 0 + 0 = 0$, $\chi((1\ 3)) = -1 + 1 = 0$, $\chi((2\ 3)) = 1 + 1 = 0$, $\chi((1\ 2\ 3)) = -1$ and $\chi((1\ 3\ 2)) = -1$.

Definition (1.9):

Two elements g and h in G are said to be conjugate if $h = xg x^{-1}$, for some $x \in G$.

30
the relation of conjugacy is an equivalence relation on G. The equivalence classes determined by this relation are referred to as the conjugate classes and CL_g, $g \in G$ is the conjugate class of the element g.

Example (1.10):

The two elements $(1\ 2\ 3)$ and $(1\ 3\ 2)$ are conjugate in the symmetric group S_3 because $(1\ 2) \cdot (1\ 2\ 3) \cdot (1\ 2)^{-1} = (1\ 3\ 2)$.

Definition (1.11):[3]

The centralizer of x in G is the subgroup $C_G(x) = \{a \in G : a \cdot x \cdot a^{-1} = x\}$.

Example (1.12):

The centralizer of $(1\ 2\ 3)$ in S_3 is the subgroup $C_{S_3}((1\ 2\ 3)) = \{(1), (1\ 2\ 3), (1\ 3\ 2)\}$.

Definition (1.13):[3]

Let H be a subgroup of G and ϕ be a character of H, the induced character on G is given by

$$\phi^G(h) = \frac{1}{|H|} \sum_{x \in G} \phi^G(xg^{-1})$$

where $g \in G$ and ϕ^G is defined by

$$\phi^G(h) = \begin{cases}
\phi(h) & \text{if } h \in H \\
0 & \text{if } h \notin H
\end{cases}$$

Example (1.14):

Consider the subgroup $H = \{(1), (1\ 2\ 3), (1\ 3\ 2)\}$ of the symmetric group S_3, let ϕ be the principal character of H, i.e $\phi(g) = 1$, for all $g \in G$. We calculate ϕ^{S_3} as follows:

$$\phi^{S_3}((1)) = \frac{1}{3} \sum_{x \in S_3} \phi^G(x(1)x^{-1}) = \frac{1}{3} \sum_{x \in S_3} \phi(1) = \frac{1}{3} \cdot 6 = 2.$$

$$\phi^{S_3}((12)) = \frac{1}{3} \sum_{x \in S_3} \phi^G(x(12)x^{-1}) = \frac{1}{3} \left[\phi^G((1)(12)(1)) + \phi^G((12)(12)(12)) + \phi^G((12)(13)(12)) + \phi^G((23)(12)(23)) + \phi^G((123)(12)(132)) + \phi^G((132)(12)(123)) \right] = \frac{1}{3} \left[\phi^G(12) + \phi^G(12) + \phi^G(23) + \phi^G(12) + \phi^G(13) + \phi^G(23) + \phi^G(13) \right] = \frac{1}{3} \cdot 0 = 0.$$

The following theorem is used to find the induced characters of the cyclic subgroups.

Theorem (1.15):[6]

Let H be a cyclic subgroup of G and h_1, h_2, \ldots, h_m are chosen representatives for the m-conjugate classes of H contained in CL_g, $g \in G$, then
\[
\phi^G(g) = \frac{C_G(g)}{C_H(g)} \sum_{i=1}^{m} \phi(h_i) \quad \text{if} \quad h_i \in H \cap \text{CL}_g
\]
\[
\phi^G(g) = 0 \quad \text{if} \quad H \cap \text{CL}_g = \Phi
\]

For the proof, see [6]

Definition (1.16):[6]

Let G be a finite group, any character induced from the principal character of cyclic subgroup of G is called Artin character of G.

Example (1.17):

The character in example (1.14) is Artin character of the symmetric group $$S_3$$.

Definition (1.18):[9]

Two elements of the group G are said to be $$\Gamma$$-conjugate if the cyclic subgroups they generate are conjugate in G, this defines an equivalence relation on G. Its classes are called $$\Gamma$$-classes.

Example (1.19):

The two elements (1 2 3) and (1 3 2) are $$\Gamma$$-conjugate in the symmetric group $$S_3$$ because
\[(1 2) \triangleleft (1 2 3) > (1 2)^{-1} = (1 3 2)\].

Proposition (1.20):[14]

The number of all distinct Artin characters on a group G is equal to the number of $$\Gamma$$-classes on G.

For the proof, see [14].

Definition (1.21):[2]

The information about Artin characters of a finite group G is displayed in a table called Artin characters table of G, denoted by Ar(G) which is $$l \times l$$ matrix whose columns are $$\Gamma$$-classes and rows the values of all Artin characters on G, where l is the number of $$\Gamma$$-classes

Example (1.22):

Given the cyclic group $$C_3 = < r >$$ of order 3, the $$\Gamma$$-classes on $$C_3$$ [1] = {1} and [r] = {r, $$r^2$$}. The Artin characters table of $$C_3$$, Ar ($$C_3$$) =

<table>
<thead>
<tr>
<th>\phi_1</th>
<th>\phi_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

, where $$\phi_1$$ and $$\phi_2$$ are the Artin characters of $$C_3$$.

Definition (1.23):[3]

A rational valued character $$\theta$$ of G is a character whose values are in the set of integer numbers Z, which is $$\theta(g) \in Z$$, for all $$g \in G$$.

Example (1.24):

The principal character on a finite group G is a rational valued character of G.

Proposition (1.25):[12]

The number of all distinct rational valued characters of a finite group G equals to the number of
Definition (1.26): [12]

The information about rational valued characters of a finite group G is displayed in a table called the rational valued characters table of G, denoted by $\equiv^*(G)$ which is $l \times l$ matrix whose columns are Γ-classes and rows are the values of all rational valued characters of G, where l is the number of Γ-classes.

Example (1.27):

$$\equiv^*(C_3) = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix},$$

where θ_1 and θ_2 are the rational valued characters of C_3.

Theorem [Artin] (1.28): [9]

Every rational valued character of a finite group G can be written as a Linear combination of Artin's characters with coefficient rational numbers.

For the proof, see [9].

2. The Factor Group $AC(G)$:

The definition of the factor group $AC(G)$ was introduced by T.Y Lam [14] in 1967. The applications of $AC(G)$ not only in the mathematics but also in physics and chemistry.

In this section we shall study $AC(G)$, dihedral group D_n and $\equiv^* (D_n)$, when n is an even number.

Definition (2.1): [14]

Let $R(G)$ be the group of \mathbb{Z}-valued generalized characters of G under the operation pointwise addition and $T(G)$ is a normal subgroup of $R(G)$ generated by Artin's characters. The abelian factor group $R(G)/T(G)$ is called Artin's Cokernel of G, denoted by $AC(G)$.

Definition (2.2): [12]

Let M be a matrix with entries in a principle domain R. A K-minor of M is the determinant of $K \times K$ submatrix preserving row and column order.

Definition (2.3): [12]

A K-th determinant divisor of M is the greatest common divisor (g.c.d) of all K-minor, denoted by $D_K(M)$.

Theorem (2.4): [12]

Let M be an $n \times n$ matrix with entries in a principle domain R, then there exist matrices P and W such that

1. P and W are invertibles.
2. $P.M.W = D$.
3. D is a diagonal matrix.
4. If we denote D_{ij} by d_j then there exists a natural number m; $0 \leq m \leq n$ such that $j > m$ implies $d_j = 0$ and $j < m$ implies $d_j \neq 0$ and $1 < j < m$ implies d_j/d_{j+1}.

For the proof, see [12].
Definition (2.5):[12]
Let M be a matrix with entries in a principal domain R, and equivalent to matrix
\[D = \{ d_1, d_2, ..., d_m, 0, 0, ..., 0 \} \], Such that \(d_j/d_{j+1} \) for \(1 < j < m \), D is called the invariant factor matrix of M and \(d_1, d_2, ..., d_m \) the invariant factors of M.

Remark (2.6):-
According to the Artin theorem (1.28) there exists an invertible matrix \(M^{-1}(G) \) with entries in the field of rational \(Q \) such that
\[\equiv^{*} (G) = M^{-1}(G) \cdot Ar(G) \] and this implies
\[M(G) = Ar(G).(\equiv^* (G))^{-1} \]
By theorem (2.4) there exists two matrices \(P(G) \) and \(W(G) \) such that
\[P(G) \cdot M(G) \cdot W(G) = \text{diag} \{ d_1, d_2, ..., d_l \} = D(G) \], where \(d_j = \pm D_j(M(G))/D_j-1(M(G)) \) and \(l \) is the number of \(\Gamma \)-classes.

Theorem (2.7):[6]
\[AC(G) = \bigoplus_{j=1}^{l} \mathbb{C}_{d_j} \] where \(d_j = \pm D_j(M(G))/D_j-1(M(G)) \), and \(l \) is the number of all distinct \(\Gamma \)-classes and \(\mathbb{C}_{d_j} \) is cyclic subgroup of order \(d_j \).
For the proof, see [6].

Proposition (2.8):[12]
Let \(P \) be a prime number, then the rational valued characters table of cyclic group \(C_p^s \) is:
\[\theta = r \] is given by
\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{\(\Gamma \)-Classes} & [1] & [r_{p^{s-1}}] & [r_{p^{s-2}}] & [r_{p^{s-3}}] & \ldots & [r_{p^2}] & [r] \\
\hline
\theta_1 & p^{s-1}(p-1) & -p^{s-1} & 0 & 0 & \ldots & 0 & 0 & 0 \\
\theta_2 & p^{s-2}(p-1) & p^{s-2}(p-1) & -p^{s-2} & 0 & \ldots & 0 & 0 & 0 \\
\theta_3 & p^{s-3}(p-1) & p^{s-3}(p-1) & p^{s-3}(p-1) & -p^{s-3} & \ldots & 0 & 0 & 0 \\
\vdots & \vdots \\
\theta_{s-1} & p(p-1) & p(p-1) & p(p-1) & p(p-1) & \ldots & p(p-1) & -p & 0 \\
\theta_s & p-1 & p-1 & p-1 & p-1 & \ldots & p-1 & p-1 & -1 \\
\theta_{s+1} & 1 & 1 & 1 & 1 & \ldots & 1 & 1 & 1 \\
\hline
\end{array}
\]
\[\equiv^* (C_p^s) = \]
For the proof, see [12].
Remark (2.9):- In general if \(n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_m^{\alpha_m} \) where \(p_1, p_2, \ldots, p_m \) are distinct primes, then
\[\equiv^* (C_n) = \equiv^* (C_{p_1}^{\alpha_1}) \otimes \equiv^* (C_{p_2}^{\alpha_2}) \otimes \ldots \otimes \equiv^* (C_{p_m}^{\alpha_m}) \] where \(\otimes \) is the tensor product.
Definition (2.10):[9]

The dihedral group D_n is a certain non-abelian group of order $2n$, it is usually thought as a group of transformations of Euclidean plane of regular n-polygon consisting of rotation r^k (about the origin) with angle $2\pi k/n$ and reflections sr^k (a cross lines through the origin).

In general it can be written as $D_n = \{S^i r^k : 0 \leq k \leq n-1, 0 \leq i \leq 1\}$, where $r^n = 1, S^2 = 1, Sr^k = r^{-k}$.

The cyclic group of order n, $C_n = \langle r \rangle$ is a normal subgroup of D_n.

Proposition (2.11):[5]

The rational valued characters table of D_n when n is an even number is given by:

$$
\begin{array}{c|cccc}
\Gamma \text{-Classes} & \Gamma \text{-Classes of } C_n & [r^0] & [s] & [sr] \\
\hline
0_1 & & & & \\
0_2 & & & & \\
\vdots & & & & \\
0_{l-1} & & & & \\
0_l & & & & \\
0_{l+1} & & & & \\
0_{l+2} & & & & \\
\end{array}
$$

Where $0_{l+2}(r^k) = 1$ if k is an even number.

and $0_{l+2}(r^k) = -1$ if k is an odd number.

l is the number of Γ-Classes of C_n.

For the proof, see [5].

Theorem (2.12):[2]

Let p be a prime number, then the Artin characters table of C_p^s is given by:

$$
\begin{array}{c|cccc}
\Gamma \text{-Classes} & [1] & [r^{p^{s-1}}] & [r^{p^{s-2}}] & \cdots & [r] \\
\hline
\varphi_1 & p^s & 0 & 0 & \cdots & 0 \\
\varphi_2 & p^{s-1} & p^{s-1} & 0 & \cdots & 0 \\
\varphi_3 & p^{s-2} & p^{s-2} & p^{s-2} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\varphi_s & p & p & p & \cdots & 0 \\
\varphi_{s+1} & 1 & 1 & 1 & \cdots & 1 \\
\end{array}
$$

For the proof, see [2].

Remark (2.13):

Let n be any positive integer and
\[n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_m^{\alpha_m} \] where \(p_1, p_2, \ldots, p_m \) are distinct primes, then

\[\text{Ar}(C_n) = \text{Ar}(C_{p_1}^{\alpha_1}) \otimes \text{Ar}(C_{p_2}^{\alpha_2}) \otimes \cdots \otimes \text{Ar}(C_{p_m}^{\alpha_m}) \]

Where \(\otimes \) is the tensor product.

Proposition (2.14):[13]

If \(P \) be a prime number and \(S \) is a positive integer, then

\[M(C_{p^i}) = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 & 1 \\
0 & 1 & 1 & \cdots & 1 & 1 \\
0 & 0 & 1 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{bmatrix} \text{ and } P(C_{p^i}) = \begin{bmatrix}
1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & -1 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -1 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{bmatrix}. \]

For the proof, see [13]

Remark (2.15):

In general if \(n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_m^{\alpha_m} \cdot 2^\beta \) where \(p_1, p_2, \ldots, p_m \) are distinct primes, then

1. \(P(C_n) = P(C_{p_1}^{\alpha_1}) \otimes P(C_{p_2}^{\alpha_2}) \otimes \cdots \otimes P(C_{p_m}^{\alpha_m}) \otimes P(C_{2^\beta}) \)

We can write

2. \[M(D_n) = \begin{bmatrix}
\beta \text{ times} & \begin{bmatrix}
1 & 1 \\
1 & 1 \\
\vdots & \vdots \\
1 & 1
\end{bmatrix} \\
R_2(C_n) & \begin{bmatrix}
1 & 1 \\
1 & 1 \\
\vdots & \vdots \\
1 & 1
\end{bmatrix} \\
\beta \text{ times} & \begin{bmatrix}
1 & 1 \\
1 & 1 \\
\vdots & \vdots \\
1 & 1
\end{bmatrix} \\
0 & 0 & \cdots & 0 & 1
\end{bmatrix} \]

Where \(R_2(C_n) \) is the matrix obtained by omitting the last two rows and columns \(\{0,0,\ldots,0,1,1\} \) and \(\{1,1,\ldots,1,0,0,\ldots,0\} \) from the tensor product

\[M(C_{p_1}^{\alpha_1}) \otimes M(C_{p_2}^{\alpha_2}) \otimes \cdots \otimes M(C_{p_m}^{\alpha_m}) \otimes M(C_{2^\beta}). \]

3. The Main Results:-

This section is devoted to study the Artin characters \(\text{Ar}(D_n) \) and the cyclic decomposition of the factor group \(\text{Ac}(D_n) \), when \(n \) is an even number.

Theorem (3.1):
The Artin characters table of the dihedral group D_n when n is an even number $\text{Ar}(D_n) = \Gamma$-

<table>
<thead>
<tr>
<th>Classes</th>
<th>$\frac{n}{2}$</th>
<th>$\frac{n}{2}$</th>
<th>$\frac{n}{2}$</th>
<th>$\frac{n}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[C_{D_n}(\text{CL}_a)]$</td>
<td>2n</td>
<td>2n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Φ_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Φ_2</td>
<td>2Ar(C_n)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Φ_j</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Φ_{l+1}</td>
<td>n</td>
<td>0</td>
<td>...........</td>
<td>0</td>
</tr>
<tr>
<td>Φ_{l+2}</td>
<td>n</td>
<td>0</td>
<td>...........</td>
<td>0 2 0</td>
</tr>
</tbody>
</table>

Where l is the number of Γ-classes of C_n.

Proof: Let $g \in D_n$ and ϕ_j is the Artin characters of C_n for all $j=1,2,\ldots, l$

Case (I):
If H is a subgroup of $C_n=<r>$, $1 < j < l$ and the principal character of H, then applying theorem (1.15) yields

$$\Phi_j(g) = \frac{[C_{D_n}(g)]}{[C_H(g)]} \cdot \sum_{i=1}^{m} \phi(h_i)$$

(i) If $g = 1$

$$\Phi_j(1) = \frac{[C_{D_n}(1)]}{[C_H(1)]} \cdot \phi(1) = \frac{2n}{[C_H(1)]} \cdot 1 = \frac{2[C_{C_n}(1)]}{[C_H(1)]} = 2\phi_j(1)$$ since $H \cap \text{CL}(1) = \{1\}$

(ii) If $g = r^2, g \neq 1$ and $g \in H$

$$\Phi_j(g) = \frac{[C_{D_n}(g)]}{[C_H(g)]} \cdot \phi(1) = \frac{2n}{[C_H(g)]} \cdot 1 \quad \text{since} \quad H \cap \text{CL}(g) = \{g\} \quad \text{and} \quad \phi(g) = 1$$

$$= \frac{2[C_{C_n}(g)]}{[C_H(g)]} \cdot \phi(g) = 2\phi_j(g)$$

(iii) If $g \neq r^2$ and $g \in H$

$$\Phi_j(g) = \frac{[C_{D_n}(g)]}{[C_H(g)]} \left(\phi(g) + \phi(g^{-1}) \right)$$

$$= \frac{n}{[C_H(g)]} (1 + 1) \quad \text{since} \quad H \cap \text{CL}(g) = \{g,g^{-1}\} \quad \text{and} \quad \phi(g) = \phi(g^{-1}) = 1$$

$$= \frac{2[C_{C_n}(g)]}{[C_H(g)]} \cdot \phi(g) = 2\phi_j(g)$$
(iv) If \(g \notin H \)
\[\Phi_j(g) = 0 \quad \text{since} \quad H \cap \text{CL}(g) = \Phi \]
\[= 2.0 = 2.\phi'(g). \]

Case (II):
If \(H = \langle S \rangle = \{1,S\} \)
(i) If \(g = 1 \)
\[\Phi_{i+1}(1) = \frac{C_{D_1}(1)}{C_H(1)} \cdot \phi(1) = \frac{2n}{2} \cdot 1 = n \]
(ii) If \(g = S \)
\[\Phi_{i+1}(S) = \frac{C_{D_1}(S)}{C_H(S)} \cdot \phi(1) = \frac{2^2}{2} \cdot 1 = 2 \]
Otherwise
\[\Phi_{i+1}(g) = 0 \quad \text{since} \quad H \cap \text{CL}(g) = \Phi \]

Case (III):
If \(H = \langle S_r \rangle = \{1,S_r\} \)
(i) If \(g = 1 \)
\[\Phi_{i+1}(1) = \frac{C_{D_1}(1)}{C_H(1)} \cdot \phi(1) = \frac{2n}{2} \cdot 1 = n \quad \text{since} \quad H \cap \text{CL}(1) = \{1\} \]
(ii) If \(g = S_r \)
\[\Phi_{i+1}(S_r) = \frac{C_{D_1}(S_r)}{C_H(S_r)} \cdot \phi(1) = \frac{2^2}{2} \cdot 1 = 2 \quad \text{since} \quad H \cap \text{CL}(S_r) = \{S_r\} \]
Otherwise
\[\Phi_{i+1}(g) = 0 \quad \text{since} \quad H \cap \text{CL}(g) = \Phi \]

Theorem (3.2):
If \(n \) is an even number and \(n = \prod_{i=1}^{\alpha_1} \cdot \prod_{i=1}^{\alpha_2} \cdot \cdots \cdot \prod_{i=1}^{\alpha_m} \cdot 2^\beta \) where
\(P_1, P_2, \ldots, P_m \) are distinct primes and \(P_i \neq 2 \) for all \(i=1,2,\ldots,m \), then the cyclic decomposition of \(AC(D_n) \) is
\[(\alpha_1+1)(\alpha_2+1)\cdots(\alpha_m+1)(\beta+1) - 1 \]
\[AC(D_n) = \bigoplus_{i=1}^{C_2} \]

Proof:-
By theorem (3.1) we obtained the Artin's characters table \(Ar(D_n) \) and from proposition (2.11) we can find the rational valued characters table \(\equiv^*(D_n) \).

Thus, by the definition of the matrix \(M(D_n) \) (Remark (2.6))
We have \(M(D_n) = \text{Ar}(D_n).(\equiv^*(D_n))^{-1} \), then
By using theorem (2.7)

Then

By theorem (2.4) and remark (2.6) we can take

square matrix.

Which is \([\alpha_1 + 1] \cdot (\alpha_2 + 1) \cdots (\alpha_n + 1)(\beta + 1) + 2\] \times \([\alpha_1 + 1] \cdot (\alpha_2 + 1) \cdots (\alpha_n + 1)(\beta + 1) + 2\]

By theorem (2.4) and remark (2.6) we can take

and

Where \(k = [(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_n + 1)(\beta + 1) - 1] \) and \(I_k \) is the identity matrix of order \(k \times k \).

Then

\(P(D_n) \cdot M(D_n) \cdot W(D_n) = D(D_n) = \text{diag} \{2,2,2,\ldots,2,1,1,1\} \)

\(= \{d_1, d_2, \ldots, d_{(\alpha_1+1)(\alpha_2+1)\cdots(\alpha_n+1)(\beta+1)-1}, 1, 1, 1\} \)

By using theorem (2.7)
\[
(\alpha_1+1)(\alpha_2+1)\cdots(\alpha_m+1)(\beta+1)-1 \quad (\alpha_1+1)(\alpha_2+1)\cdots(\alpha_m+1)(\beta+1)-1
\]

\[AC(D_n)=\bigoplus_{i=1}^{C_{d_i}}=\bigoplus_{i=1}^{C_2}
\]

\[C_2\]
since \(d_i=2\) for all \(i=1,2,\ldots, [(\alpha_1+1)(\alpha_2+1)\cdots(\alpha_m+1)(\beta+1)-1]
\]

Example (3.3):
To find \(AC(D_{1800})\) , \(AC(D_{365904})\)

\[AC(D_{1800})=AC(D_{3^2\times 5\times 7})=\bigoplus_{i=1}^{C_2}=\bigoplus_{i=1}^{C_2}
\]

\[C_2=119\]

\[AC(D_{365904})=AC(D_{1^1\times 3^7\times 5^2})=\bigoplus_{i=1}^{C_2}=\bigoplus_{i=1}^{C_2}
\]

References :-