المجلة: مجلة ابن الهيثم للعلوم الصرفة والتطبيقية
المجلد: 24 (2) 2011

المجموعات – α - شبه المنتظمة المغلقة

نادية فائق محمد
قسم الرياضيات، كلية التربية - ابن الهيثم، جامعة بغداد

استلم البحث في: 23 حزيران 2010
قبل البحث في: 27 أيار 2010

الخلاصة

لقد قمنا في هذا البحث بتقديم ودراسة نوع جديد من المجموعات المغلقة في الفضاءات التوسيعية يدعى بالمجموعات – α - شبه المنتظمة المغلقة، إذ أن هذا النوع من المجموعات المغلقة تشوي مجموعات شبه مغلقة - α - وتكون محتوية في المجموعات قبل شبه المغلقة. وكما قمنا ودرسنا نوعا جديدا من الدوال المستمرة والمترددة تعني دالة من النمط - α - شبه المنتظمة المستمرة وبلا من النمط - α - شبه المنتظمة المترددة. كما وجدنا أن الاستمرارية من النمط - α - شبه المنتظمة تكون واقعة تماماً بين الاستمرارية من النمط - α - والاستمرارية من النمط قبل الشبه.

الكلمات المفتاحية: المجموعة من النمط - α - شبه المنتظمة المغلقة، الدالة من النمط - α - شبه المنتظمة المستمرة، الدالة من النمط - α - شبه المنتظمة المترددة.
α - Semi-Regular Closed Sets

N. F. Mohammed
Department of Mathematics, College of Education, -Ibn-Al-Haitham, University of Baghdad

Received in: 23, June, 2010
Accepted in: 27, September, 2010

Abstract

In this paper, a new class of sets, namely α- semi-regular closed sets is introduced and studied for topological spaces. This class properly contains the class of semi-α-closed sets and is property contained in the class of pre-semi-closed sets. Also, we introduce and study αsr-continuity and αsr-irresolute. We showed that αsr-continuity falls strictly in between semi-α- continuity and pre-semi-continuity.

Key words: α- semi-regular closed set, α- semi-regular continuous, α- semi-regular irresolute.

Introduction

Najasted [1] and Levine [2] introduced α-open sets and generalized closed sets, Kummar introduced α-generalized regular closed set and pre-semi closed set, see [3] and [4]. Alot of work was done in the field of generalized closed sets. In this paper we employ a new technique to obtain a new class of sets, called α-semi-regular closed sets. This class is obtained by semi-α-closed set and regular open set. It is shown that the class of α-semi-regular closed sets properly contains the class of semi-α-closed sets and is properly contained in the class of pre-semi-closed sets. We also introduce and study two classes of maps, namely, α-semi-regular continuity and α-semi-regular irresoluteness, α-semi-regular continuity falls strictly in between semi-α-continuity and pre-semi-continuity.

1- Preliminaries

Throughout this paper (X,τ) and (Y,τ') represent non-empty topological spaces. For a subset A of a space (X,τ), cl(A) and int(A) represent the closure of A and the interior of A respectively.

1.1 Definition:

(1) an α-open set [1], [5] if A ⊆ int(cl(int(A))) and α-closed if cl(int(cl(A))) ⊆ A.
(2) a semi-α-open set [6], [7] if A ⊆ cl(int(cl(int(A)))) and semi-α-closed if int(cl(int(cl(A)))) ⊆ A.
(3) a semi-preopen set [8], [9] if A ⊆ cl(int(cl(A))) and semi-preclosed if int(cl(int(cl(A)))) ⊆ A.
(4) a regular open set [10], [11] if A = int(cl(A)) and regular closed if A = cl(int(A)).
(5) a generalized closed set (briefly g-closed) [2], [12] if cl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ). The complement of a g-closed set is called a g-open set.
(6) an α-generalized closed set (briefly αg-closed) [13] if α cl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ).
(7) a generalized α-closed set (briefly ga-closed) [14] if αcl(A) ⊆ U whenever A ⊆ U and U is α-open in (X,τ).
(8) a generalized α*-closed set (briefly ga*-closed) [14] if αcl(A) ⊆ int(U) whenever A ⊆ U and U is α-open in (X,τ).
an $\alpha\ast\ast$-generalized closed set (briefly $\alpha\ast\ast$-g-closed) [14] if $\alpha\ cl(A) \subseteq \text{int}(cl(U))$ whenever $A \subseteq U$ and U is open in (X,τ).

(10) a generalized $\alpha\ast\ast$-closed set (briefly $g\alpha\ast\ast$-closed) [14] if $\alpha\ cl(A) \subseteq \text{int}(cl(U))$ whenever $A \subseteq U$ and U is α-open in (X,τ).

(11) an α-generalized regular closed set (briefly αgr-closed) [3] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X,τ).

(12) a regular generalized closed set (briefly rg-closed) [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X,τ).

(13) a generalized semi-preclosed set (briefly gsp-preclosed) [16] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X,τ).

(14) a pre-semi-closed set [4] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X,τ).

The semi-α-closure (resp. α-closure, semi-pre-closure) of A in (X,τ) is the intersection of all semi-α-closed (resp. α-closed, semi-pre-closure) sets of (X,τ) that contain A and is denoted by $S_\alpha cl(A)$ (resp. $\alpha cl(A), spcl(A)$).

1.2 Proposition:

(1) Every α-closed set is semi-α-closed set, not conversely, [6].

(2) Every closed set is α-closed set, so it is semi-α-closed set, not conversely, [6].

(3) Every closed (resp. α-closed, g-closed, $g\alpha$-closed) set is an αgr-closed set, [3].

(4) Every $g\alpha^\ast$-closed (resp. $\alpha\ast\ast$-g-closed, $g\alpha\ast\ast$-closed) set is an αgr-closed set, [3].

(5) Every pre-semi-closed set is a gsp-closed set [4].

(6) Every semi-α-closed set is semi-pre-closed set.

The proof follows directly from the definitions.

1.3 Remark: [6]

Let X be a topological space, A and B be two subsets of X, then

(1) A is semi-α-closed set if and only if $A = S_\alpha cl(A)$.

(2) $A \subseteq S_\alpha cl(A) \subseteq \alpha cl(A) \subseteq cl(A)$.

(3) $S_\alpha cl(A) \subseteq S_\alpha cl(B)$, whenever $A \subseteq B$.

1.4 Definition:

A function $f(X,\tau) \longrightarrow (Y,\tau')$ is said to be:

(1) semi-α-continuous [6], [7] if $f^{-1}(V)$ is a semi-α-closed set in (X,τ) for every closed set V of (Y,τ').

(2) g-continuous [17] if $f^{-1}(V)$ is a g-closed set in (X,τ) for every closed set V of (Y,τ').

(3) αg-continuous [18] if $f^{-1}(V)$ is an αg-closed set in (X,τ) for every closed set V of (Y,τ').

(4) ga -continuous [14] if $f^{-1}(V)$ is a ga-closed set in (X,τ) for every closed set V of (Y,τ').

(5) αgr-continuous [3] if $f^{-1}(V)$ is an αgr-closed set in (X,τ) for every closed set V of (Y,τ').

(6) pre-semi-continuous [4] if $f^{-1}(V)$ is a pre-semi-closed set in (X,τ) for every closed set V of (Y,τ').

(7) gsp-continuous [16] if $f^{-1}(V)$ is a gsp-closed set in (X,τ) for every closed set V of (Y,τ').

(8) semi-α-irresolute [6] if $f^{-1}(V)$ is a semi-α-closed set in (X,τ) for every semi-α-closed set V of (Y,τ').

(9) αgr-irresolute [3] if $f^{-1}(V)$ is an αgr-closed set in (X,τ) for every αgr-closed set V of (Y,τ').

(10) regular irresolute [19] if $f^{-1}(V)$ is a regular open set in (X,τ) for every regular open set V of (Y,τ').

(11) semi-α^\ast-closed [6] if $f(U)$ is a semi-α-closed set in (Y,τ') for every semi-α-closed set U in (X,τ).

1.5 Proposition:

(1) Every αg-continuous map is αgr-continuous map [3].

(2) Every g-continuous (resp. ga-continuous) map is an αgr-continuous map [3].

(3) Every pre-semi-continuous map is gsp-continuous map [4].
(4) Every αgr-irresolut map is αgr-continuous map [3].

(5) Every continuous and open map is semi-α-irresolute map [20].

2- α-Semi-Regular Closed Sets

In this section we introduce the class of α-semi-regular closed sets and study some of its basic properties.

2.1 Definition:

A subset A of (X, τ) is called α-semi-regular closed set (briefly αsr-closed) if $S_\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ).

$\alpha SRC(X)$ denotes the collection of all αsr-closed subset of (X, τ).

2.2 Proposition:

Every semi-α-closed set is an αsr-closed set.

Proof: Let A be a semi-α-closed set, let U be a regular open set of (X, τ) such that $A \subseteq U$. Since $S_\alpha cl(A) = A$ for any semi-α-closed set (by part 1 of remark 1.3), then $S_\alpha cl(A) \subseteq U$. Therefore A is also an αsr-closed set.

The following example shows that the converse of the above proposition is not true in general.

2.3 Example:

Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Let $A = \{a, c\}$, X is the only regular open set containing A. It is clear A is an αsr-closed set. But A is not semi-α-closed set since $S_\alpha cl(\{a, c\}) = X \neq \{a, c\}$.

Thus the class of αsr-closed set properly contains the class of semi-α-closed sets.

2.4 Proposition:

Every αgr-closed set is an αsr-closed set.

Proof: Let A be an αgr-closed set, let U be a regular open set of (X, τ) such that $A \subseteq U$. Since A is αgr-closed set and $S_\alpha cl(A) \subseteq cl(A)$ (by part (2) of remark 1.3), then $S_\alpha cl(A) \subseteq U$. Therefore A is also an αsr-closed set.

The following example shows that the αsr-closed set need not to be an αgr-closed set.

2.5 Example:

Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}\}$. Let $A = \{b\}$, let $\{b\}$ is the regular open set containing A. Trivially A is an αsr-closed set since $S_\alpha cl(\{a, c\}) = X \neq \{a, c\}$. But A is not αgr-closed set since $\alpha cl(A) = \{b, c\} \not\subseteq \{b\}$.

2.6 Corollary:

Every closed (resp. α-closed, g-closed, αg-closed) set is an αsr-closed set.

Proof: Since every αgr-closed set is an αsr-closed set, part (4) of proposition 1.2 is applicable.

The following example shows that the reverse implications in the above corollary are not true in general.

2.7 Example:

Let X, τ and A be as in example 2.3. A is neither closed (since $cl(A) = X \neq A$) nor α-closed (since $\alpha cl(A) = X \neq A$) and also it is neither g-closed (since $A = \{a, c\} \subseteq \{a, c\}$ whenever $\{a, c\} \in \tau$, but $cl(A) = X \not\subseteq \{a, c\}$) nor αg-closed (since $\alpha cl(A) = X \not\subseteq \{a, c\}$) whenever $\{a, c\} \in \alpha O(X)$, but $\alpha cl(A) = X \not\subseteq \{a, c\}$.

2.8 Corollary:

Every $\alpha g**$-closed (resp. $\alpha**$ g-closed, $\alpha** g$-closed) set is an αsr-closed set.

Proof: Since every αgr-closed set is an αsr-closed set, part (4) of proposition 1.2 is applicable.

The following example shows that an αsr-closed set needs not to be a $\alpha g**$-closed set.
2.9 Example:
Let \(X = \square \) and \(\tau = \tau_U \), let \(A = (a,b) \) is \(\alpha \)-\(sr \)-closed set but not a \(\alpha \)-\(* \)-closed set, since \((a,b) \subseteq (a,b) \) and \((a,b) \) is \(\alpha \)-open set in \((\square, \tau_U) \), but \(\alpha \text{cl}(A) = [a,b] \not\subseteq (a,b) \).

2.10 Proposition:
Every \(r \)-\(g \)-closed is an \(\alpha \)-\(sr \)-closed set.

Proof: Let \(A \) be a regular generalized closed set of \((X, \tau) \). Let \(U \) be a regular open set of \((X, \tau) \) such that \(A \subseteq U \). Then \(\text{cl}(A) \subseteq U \) since \(A \) is \(r \)-\(g \)-closed set. Since every closed set is semi-\(\alpha \)-closed set, then \(S_\alpha \text{cl}(A) \subseteq \text{cl}(A) \) (part 2 of remark 1.3). Thus \(S_\alpha \text{cl}(A) \subseteq U \), therefore \(A \) is an \(\alpha \)-\(sr \)-closed set.

The converse of above proposition is not always true as the following example shows.

2.11 Example:
Let \(X \) and \(\tau \) be as in example 2.3, let \(A = \{c\} \) and \(U = \{c\} \) is regular open set containing \(A \).
It is clear \(A \) is an \(\alpha \)-\(sr \)-closed set since \(S_\alpha \text{cl}(A) = \{c\} \subseteq \{c\} \). But is not \(r \)-\(g \) closed set since \(\text{cl}(A) = \{b,c\} \not\subseteq \{c\} \).

2.12 Proposition:
Every \(\alpha \)-\(g \)-closed set is an \(\alpha \)-\(sr \)-closed set

Proof: Let \(A \) be an \(\alpha \)-\(g \)-closed set, let \(U \) be a regular open set of \((X, \tau) \) such that \(A \subseteq U \). Since \(A \) is \(\alpha \)-\(g \)-closed and every regular open set is an open set, then \(\alpha \text{cl}(A) \subseteq U \). But \(S_\alpha \text{cl}(A) \subseteq \alpha \text{cl}(A) \) since every \(\alpha \)-closed set is semi-\(\alpha \)-closed set. Therefore \(A \) is also an \(\alpha \)-\(sr \)-closed set.

The converse in the above proposition is not true as it can be seen from the following example.

2.13 Example:
In example 2.3 \(\alpha \text{cl}(A) = X \not\subseteq \{a,c\} \). Thus \(A \) is not \(\alpha \)-\(g \)-closed set, but it is \(\alpha \)-\(sr \)-closed set.

2.14 Proposition:
Let \(A \) be an \(\alpha \)-\(sr \)-closed set of \((X, \tau) \). Then \(S_\alpha \text{cl}(A)-A \) does contain any non-empty regular closed set.

Proof: Let \(F \) be any regular closed set of \((X, \tau) \) such that \(F \subseteq S_\alpha \text{cl}(A)-A \). Then \(F \subseteq X-A \) implies that \(A \subseteq X - F \). Since \(A \) is \(\alpha \)-\(sr \)-closed and \(X - F \) is a regular open set of \((X, \tau) \), then \(S_\alpha \text{cl}(A) \subseteq X - F \), so \(F \subseteq X - S_\alpha \text{cl}(A) \). Therefore \(F \subseteq S_\alpha \text{cl}(A) \cap (X - S_\alpha \text{cl}(A)) = \emptyset \). Hence \(S_\alpha \text{cl}(A) - A \) does not contain any non-empty regular closed set.

2.15 Proposition:
Every \(\alpha \)-\(sr \)-closed set is a \(\alpha \)-pre-semi-closed set.

Proof: Let \(A \) be a \(\alpha \)-\(sr \)-closed set of \((X, \tau) \), let \(U \) be a regular open set of \((X, \tau) \) such that \(A \subseteq U \). Then \(S_\alpha \text{cl}(A)-A \) does contain any non-empty regular closed set.

2.16 Corollary:
Every \(\alpha \)-\(sr \)-closed set is a \(\alpha \)-\(gr \)-closed set.

Proof: Follows from the above proposition and part (5) of proposition 1.2.

2.17 Corollary:
Every \(\alpha \)-\(gr \)-closed set is \(\alpha \)-\(sr \)-closed set.

Proof: Follows from the fact every \(\alpha \)-\(gr \)-closed set is \(\alpha \)-\(sr \)-closed and proposition 2.15.

2.18 Proposition:
If \(A \) is regular open and \(\alpha \)-\(sr \)-closed set then \(A \) is \(\alpha \)-\(gr \)-closed set.

Proof: It is clear.

2.19 Proposition:
Let \(A \) be an \(\alpha \)-\(sr \)-closed subset of \((X, \tau) \). If \(B \subseteq X \) such that \(A \subseteq B \subseteq S_\alpha \text{cl}(A) \), then \(B \) is \(\alpha \)-\(sr \)-closed set.
Proof: Let U be a regular open set of (X, τ) such that $B \subseteq U$. Then $A \subseteq U$, since A is α_{sr}-closed set, $S_\alpha c(A) \subseteq U$. Now, $S_\alpha c(B) \subseteq S_\alpha c(S_\alpha c(A)) = S_\alpha c(A) \subseteq U$. Therefore B is also an α_{sr}-closed set.

Fig. (1) shows the relations among the different types of weakly closed sets that were studied in this section.

3- α-Semi Regular Continuous Maps and α-Semi-Regular-Irresolute Maps

3.1 Definition:
A function $f: (X, \tau) \rightarrow (Y, \tau')$ is called an α-semi-regular continuous map (briefly α_{sr}-continuous if $f^{-1}(V)$ is an α_{sr}-closed set of (X, τ) for every closed set V of (Y, τ').

3.2 Proposition:
Every semi-α-continuous map is α_{sr}-continuous.

Proof: Follows from proposition 2.2.

We show that the class of α_{sr}-continuous maps properly contains the class of α_{gr}-continous maps.

3.3 Proposition:
Let $f: (X, \tau) \rightarrow (Y, \tau')$ be an α_{gr}-continuous map. Then f is an α_{sr}-continuous map.

Proof: Let V be a closed set of (Y, τ'). Since f is an α_{gr}-continuous map, then $f^{-1}(V)$ is an α_{gr}-closed set of (X, τ). By proposition 2.4 $f^{-1}(V)$ is an α_{sr}-closed set of (X, τ). Thus f is an α_{sr}-continuous map.

The implications in proposition 3.3 is not reversible. Follows from the following example.

3.4 Example:
Let $X = \{a,b,c\} = Y$, $\tau = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}$ and $\tau' = \{Y,\emptyset,\{a,c\}\}$. Define $f: (X, \tau) \rightarrow (Y, \tau')$ by $f(a) = c$, $f(b) = b$ and $f(c) = a$, $\{b\}$ is a closed set of (Y, τ') but $f^{-1}(\{b\}) = \{a\}$ is not α_{gr}-closed set of (X, τ). So f is not α_{gr}-continuous map. However f is an α_{sr}-continuous map.

3.5 Corollary:
Every α_{g}-continuous map is α_{sr}-continuous.

Proof: Follow from part (1) of proposition 1.5 and proposition 3.3.

The converse of the above corollary is not true in general as we see in the following example.

3.6 Example:
Let X, Y, τ and the definition of f as in example 3.4, let $\tau' = \{Y,\emptyset,\{a\},\{b,c\}\}$. f is not α_{g}-continuous map since $\{b,c\}$ is a closed set of (Y, τ') but $f^{-1}(\{b,c\}) = \{a\}$ is not α_{g}-closed set of (X, τ). However f is an α_{sr}-continuous map.

3.7 Corollary:
Every α_{gr}-irresolute map is an α_{sr}-continuous.

Proof: Necessity follows from part (4) of proposition 1.5 and proposition 3.3.

The converse of the above corollary is not true in general as we see in the following example.

3.8 Example:
See example 3.4 f is α_{sr}-continuous map but not g-continuous map.

3.9 Corollary:
Every α_{gr}-irresolute map is an α_{sr}-continuous.

Proof: Necessity follows from part (4) of proposition 1.5 and proposition 3.3.

The converse of the above corollary is not true in general as we see in the following example.
3.10 Example:
Let \(X = \{a, b, c\} = Y \), \(\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau' = I \). Define \(f : X \rightarrow Y \) by \(f(a) = c \), \(f(b) = b \) and \(f(c) = a \). \(\{b\} \) is an \(\alpha \text{-sr-closed} \) set of \((Y, \tau')\) but \(f^{-1}(\{b\}) = \{b\} \) is not \(\alpha \text{gr-closed} \) set of \((X, \tau)\). So \(f \) is not \(\alpha \text{gr-irresolute} \) map. However \(f \) is an \(\alpha \text{sr-continuous} \) map.

3.11 Theorem:
Let \(f : (X, \tau) \rightarrow (Y, \tau') \) be an \(\alpha \text{sr-continuous} \) map. Then \(f \) is a pre-semi-continuous map.

Proof : Let \(V \) be a closed set of \((Y, \tau')\). Since \(f \) is \(\alpha \text{sr-continuous} \) map, then \(f^{-1}(V) \) is an \(\alpha \text{sr-closed} \) set of \((X, \tau)\). By proposition (2.15) \(f^{-1}(V) \) is a pre-semi-closed set of \((X, \tau)\). Thus \(f \) is a pre-semi-continuous map.

3.12 Corollary:
Every \(\alpha \text{sr-continuous} \) map is gsp-continuous.

Proof: Follows from the above proposition and part (3) of proposition 1.5.

3.13 Definition:
A function \(f : (X, \tau) \rightarrow (Y, \tau') \) is called an \(\alpha \text{-semi-regular} \) irresolute (briefly \(\alpha \text{sr-irresolute} \)) if \(f^{-1}(V) \) is an \(\alpha \text{sr-closed} \) set of \((X, \tau)\) for every \(\alpha \text{sr-closed} \) set of \((Y, \tau')\).

3.14 Proposition:
Let \(f : (X, \tau) \rightarrow (Y, \tau') \) be an \(\alpha \text{sr-irresolute} \) map. Then \(f \) is an \(\alpha \text{sr-continuous} \) map.

Proof: Let \(V \) be a closed set of \((Y, \tau')\). By corollary 2.6 \(V \) is an \(\alpha \text{sr-closed} \) set of \((Y, \tau')\). Since \(f \) is an \(\alpha \text{sr-irresolute} \) map, \(f^{-1}(V) \) is an \(\alpha \text{sr-closed} \) set of \((X, \tau)\). Therefore \(f \) is an \(\alpha \text{sr-continuous} \) map.

Thus the class of \(\alpha \text{sr-continuous} \) maps property continuous the class of \(\alpha \text{sr-irresolute} \) map.

3.15 Corollary:
Every \(\alpha \text{sr-irresolute} \) map is a pre-semi-continuous.

Proof: Follows from the above proposition and corollary 3.12.

3.16 Corollary:
Every \(\alpha \text{sr-irresolute} \) is a gsp- continuous.

Proof: Follows from proposition 3.14 and corollary 3.12.

3.17 Theorem:
Let \(f : (X, \tau) \rightarrow (Y, \tau') \) be a regular irresolute and semi-\(\alpha \)-irresolute map. Then \(f \) is \(\alpha \text{sr-irresolute} \) map.

Proof: Let \(A \) be an \(\alpha \text{sr-closed} \) set of \((Y, \tau')\), then there exists a regular open set \(U \) of \(Y \) such that \(S_{\alpha \text{cl}}(A) \subseteq U \) whenever \(A \subseteq U \). By taking the inverse image we get \(f^{-1}(S_{\alpha \text{cl}}(A)) \subseteq f^{-1}(U) \). Since \(f \) is regular irresolute map, then \(f^{-1}(U) \) is regular open subset of \(X \). Since \(f \) is semi-\(\alpha \)-irresolute map, then \(f^{-1}(S_{\alpha \text{cl}}(A)) \) is semi-\(\alpha \)-closed subset of \(X \). This implies \(S_{\alpha \text{cl}}(f^{-1}(S_{\alpha \text{cl}}(A))) = f^{-1}(S_{\alpha \text{cl}}(A)) \) (by part (1) of remark 1.3), then \(S_{\alpha \text{cl}}(f^{-1}(S_{\alpha \text{cl}}(A))) \subseteq S_{\alpha \text{cl}}(f^{-1}(S_{\alpha \text{cl}}(A))). \) Thus \(S_{\alpha \text{cl}}(f^{-1}(A)) \subseteq f^{-1}(U) \). Therefore \(f^{-1}(A) \) is \(\alpha \text{sr-closed} \) set in \(X \). Therefore \(f \) is \(\alpha \text{sr-irresolute} \) map.

3.18 Corollary:
Every continuous, open and regular irresolute map is \(\alpha \text{sr-irresolute} \).

Proof: It is clear by part (5) of proposition 1.5 and the above theorem.

3.19 Definition:
Let \(f : (X, \tau) \rightarrow (Y, \tau') \) be a function, then \(f \) is said to be:

(1) \(\alpha \)-semi-regular closed (briefly \(\alpha \text{sr-closed} \)) if \(f(A) \) is an \(\alpha \text{sr-closed} \) set of \((Y, \tau')\) for every closed set \(A \) of \((X, \tau)\).

(2) \(\alpha \text{*}-semi-regular closed (briefly \(\alpha \text{*sr-closed} \)) if \(f(A) \) is an \(\alpha \text{sr-closed} \) set of \((Y, \tau')\) for every \(\alpha \text{sr-closed} \) set \(A \) of \((X, \tau)\).

3.20 Remark:
It is clear that every closed function is \(\alpha \)-semi-closed function, but the converse is not true in general as the following example shows:
3.21 Example:
Let \(X = \{a, b, c, d\} \), \(\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Define \(f:(X, \tau) \longrightarrow (X, \tau) \) by \(f(a) = a, f(b) = b, f(c) = f(d) = d \) we observe \(f \) is \(\alpha \)-semi-regular closed function which is not closed function since \(\{a, c, d\} \) is closed set in \(X \), but \(f(\{a, c, d\}) = \{a\} \) is not closed set in \(X \). Hence \(f \) is \(\alpha \)-semi-regular closed function, which is not closed function.

Finally, we prove the following theorem.

3.22 Theorem:
Let \(f:(X, \tau) \longrightarrow (Y, \tau') \) be a regular irresolute and semi-\(\alpha \)-*-closed map. Then \(f \) is \(\alpha \)-*-semi-regular closed map.

Proof: Let \(A \) be an \(\alpha \)-sr-closed set of \((X, \tau) \), let \(U \) be a regular open set of \((Y, \tau') \) such that \(f(A) \subseteq U \). Since \(f \) is regular irresolute, then \(f^{-1}(U) \) is a regular open set of \((X, \tau) \). Since \(A \subseteq f^{-1}(U) \) and \(A \) is an \(\alpha \)-sr-closed, then \(S_\alpha \text{cl}(A) \subseteq f^{-1}(U) \). This implies \(f(S_\alpha \text{cl}(A)) \subseteq U \). Since \(f \) is semi-\(\alpha \)-*-closed map, then \(f(S_\alpha \text{cl}(A)) = S_\alpha \text{cl}(f(S_\alpha \text{cl}(A))) \). So \(S_\alpha \text{cl}(f(A)) \subseteq S_\alpha \text{cl}(f(S_\alpha \text{cl}(A))) = f(S_\alpha \text{cl}(A))) \subseteq U \). Therefore \(f(A) \) is an \(\alpha \)-sr-closed set of \((Y, \tau') \).

3.23 Corollary:
Let \(f:(X, \tau) \longrightarrow (Y, \tau') \) be a regular irresolute and semi-\(\alpha \)-*-closed map. Then \(f(A) \) is a pre-semi-closed set of \((Y, \tau') \) for every \(\alpha \)-sr-closed set of \((X, \tau) \).

Proof: It is clear.

Fig. (2) explains the relationships among the different types of weakly continuous function.

References

Fig. (1) the relations among the different types of weakly closed sets

Fig. (2) the relationships among the different types of weakly continuous function.