تأثير بكتريا Lactobacillus gasseri ضد الأصابة ببكتريا Pseudomonas aeruginosa في الفئران

محمد فرج المرجاني، رواء عبد الأمير عبد الجبار، علي مرتضى حسن
قسم علوم الحيوان، كلية العلوم، الجامعة المستنصرية

الخلاصة

درس تأثير راشح بكتريا Lactobacillus gasseri ضد الأصابة ببكتريا Pseudomonas aeruginosa في الفئران، إذ حقن مجموعة من الفئران داخل الغشاء البريتوني ب 0.25 مل من راشح بكتريا L. gasseri لمدة خمسة أيام، بينما حقن مجموعة السيطرة ب 0.2 مل من دارئ الفوسفات. ثم داش السيطرة داخل الغشاء البريتوني وأخذت محتويات البريتوين. ورزع 0.1 مل على الأعشاب الزراعية لحساب عدد المستعمرات البكتيرية ثم قلت الفئران بعد 12 ساعة من حقنها ببكتريا P. aeruginosa، وتم تحقيق نتائج في معدل السيطرة وقورنت في المستعمرات النامية وقورنت الأعداد بمعالجة السيطرة، وكذلك تم حساب نسبة الخلايا البلعمية في محتويات البريتوين. وخارج P. aeruginosa عند تعريضها Lb. gasseri، أظهرت النتائج عدم تأثر الفئران المعاملة براشح بكتريا Lb. gasseri فقط من دون حقنها بالبكتريا الواقية وكانت نسبة الخلايا البلعمية هي 18 % في مجموعة السيطرة، بينما كانت نسبة الخلايا البلعمية في مجموعة الأختبار 27 % في مجموعة الأختبار، مما يدل على التأثير الوقائي لبكتريا Lb. gasseri في الحماية من الأصابة ببكتريا P. aeruginosa.
The Effect of *Lactobacillus gasseri* Against *Pseudomonas aeruginosa* Infection in Mice.

M. F. AL- Marjani , R. A.A. Abdul-Jabbar and A.M. Hassan
Department of Biology, College of Science, University of Al- Mustansiriya

Abstract

The effect of local *Lactobacillus gasseri* filtrate against *Pseudomonas aeruginosa* infection in mice was studied. 0.25 ml of concentrated filtrate *Lactobacillus gasseri* was injected intraperitoneally (I.P.) 5 days before challenge with 0.2 ml viable *P. aeruginosa* (10^8 cell/ml).

Animals were sacrificed after 12 h. from challenge by cutting the femoral artery. To follow bacterial growth in the peritoneal cavity, its contents were washed out with 5 ml of PBS. The fluid was diluted, 0.1 ml from each dilution and was spread on culture media. The number of colonies in 5 ml of harvested fluid was expressed as Log 10 CFU, and the percentage of Macrophage in the peritoneal cavity was counted.

Growth of *P. aeruginosa* in the peritoneal cavity was markedly inhibited in *Lb. gasseri* pretreated mice, whereas such inhibition of bacterial growth was not observed in another group (mice were not treated with *Lb. gasseri*).

The percentage of macrophage detectable in the peritoneal cavity was 18% in control and 27% in test. It was suggested that macrophages activated with *Lb. gasseri* were involved in the protective to *P. aeruginosa*.

Introduction

Lactic Acid Bacteria (LAB) are gram-positive bacteria with cell wall components such as peptidoglycan, polysaccharide and teichoic acid, all of which have showed to own immunostimulatory properties. In addition to cell wall components, immunostimulatory effects were observed with antigens originated from the cytoplasms of some strains of LAB [1].

Certain specific probiotic strains (for example, *Lactobacillus rhamnosus*, *Lactobacillus plantarum*, *Lactobacillus casei* and *Lactobacillus johnsonii*) have well defined and proved the clinical effects for the treatment and/or prevention of diseases of intestinal and extraintestinal origin [1]. And have immunostimulatory properties, including modulation of cytokine production, increased phagocytic activity of polymorphs, adjuvant effects on specific humoral responses, T-lymphocytic function, and NK activity [2][3].

Probiotic bacteria are showed that they would promote the endogenous host defense mechanisms. In addition to the effects of probiotics on nonimmunologic gut defense, which is characterized by stabilization of the gut microflora, probiotic bacteria have showed their ability to enhance humoral immune responses and thereby promote the intestine's immunologic barrier. Moreover, probiotic bacteria have showed their ability to stimulate nonspecific host resistance to microbial pathogens. Thereby they would have the ability to aid in immune elimination, and to modulate the host's immune responses to potentially harmful antigens with a potential to down-regulate hypersensitivity reactions [4] [5].

Oral introduction of *Lactobacillus casei* and *Lactobacillus bulgaricus* activated the production of macrophages and administration of *L. casei* and *Lactobacillus acidophilus* activated phagocytosis in mice, enhanced phagocytosis was also reported in humans by *L. acidophilus*[2]. De Simone et al [6] studied the influence of a yogurt-supplemented diet on...
the immunocompetence and survival of animals subsequently infected with *Salmonella typhimurium*. De Simone *et al.* reported that mice fed live LAB (*L. bulgaricus* and *Streptococcus thermophilus*)-containing yogurt for 7 and 14 days had a higher percentage of B lymphocytes than did mice fed a control diet supplemented with a cow milk. In a similar experiment, Puri *et al.* [7] showed that intestinal lymphocytes from mice fed live LAB-containing yogurt had a higher proliferative response to LPS than did mice fed milk after a challenge with *S. typhimurium*.

Although the mechanism(s) of action involved in the inhibition of *P. aeruginosa* was not investigated in the present study, it is therefore believed that some factors may include bacteriocins, hydrogen peroxide, diacetyl, and CO₂, or enzymes by the selected *Lactic Acid Bacteria* [8]. Finally, *L. casei* strain Shirota administration before or after an initial challenge dramatically inhibited *E. coli* growth in a murine model of urinary tract infection [9].

Most studies investigated the effects of *Lactobacillus* on pathogenic bacteria *in vitro*, whereas very few studies have investigated the effects of *Lactobacillus* *in vivo*. The aim of this work was to study the effect of *Lactobacillus gasseri* filtrate on prevention of *P. aeruginosa* infection in mice.

Material and Methods

Animals:

Balblc- Male mice were obtained from Department of Biology – College of Science - AL-Mustansirya University. Mice were used in experiments at 7 to 9 weeks of age, 25-30 gram weight (Five mice for each group).

Bacterial isolates:

1) *Lb. gasseri* (maintained from Department of Biology – College of Science - AL-Mustansirya University) was cultured on De Man Regosa Sharpe medium (MRS) at 37°C for 48 hrs. The *Lb. gasseri* filtrate was prepared according to [9].

2) A clinical isolate of *P. aeruginosa* was isolated from wound infection and identified according to [10].

Bacterial infection:

In the experiment to test the protective effect of *Lb. gasseri* filtrate against *P. aeruginosa* in mice, 0.25 ml of *Lb. gasseri* filtrate was injected intraperitoneally (I.P.) 5 days before challenged with 0.2 ml viable *P. aeruginosa* (10⁸ cell/ml) [11].

Determination of bacterial growth:

The challenge dose of bacteria was injected I.P. to control mice and mice that had been treated with *Lb. gasseri* filtrate 5 days earlier. Twelve hour. after the challenge, animals were sacrificed by cutting the femoral artery. To follow bacterial growth in the peritoneal cavity, its contents were washed out with 5 ml of PBS. The fluid was diluted 10-fold with PBS, 0.1 ml from each dilution was spread on nutrient agar plates (containing 0.4% glucose). The number of colonies in 5 ml of harvested fluid was expressed as Log 10 CFU [11].

Counting of WBCs in peritoneal cavity:

Smear specimens for differential counts were prepared for Giemsa staining and examined [12].

Results and Discussion

In our study the protective effect of *Lb. gasseri* filtrate against *P. aeruginosa* infection in mice was studied. PBS treated control mice and those pretreated with 0.25 ml of *Lb. gasseri* filtrate 5 days earlier were inoculated I.P. with 0.2 ml viable *P. aeruginosa* and the growth of the bacteria in the peritoneal cavity was followed. The number of the *P. aeruginosa* in the peritoneal cavity decreased gradually to about 10⁶ CFU by 12 h. after challenge in control mice Fig. (1). In mice pretreated with *Lb. gasseri* filtrate, however, the bacteria were reduced rapidly to 10³ CFU in 12 h. Although the mechanism(s) of action involved in the inhibition of *P. aeruginosa* was not investigated in the present study, it is therefore believed
that some factors may include bacteriocins, hydrogen peroxide, diacetyl and CO2, or enzymes by the selected Lactic Acid Bacteria [8].

Differential cell counts of peritoneal leukocytes were studied consecutively after treatment with Lb. gasseri filtrate. The percentage of macrophage detectable in the peritoneal cavity was in control and 27% in test. Macrophages were characteristically increased in Lb. gasseri filtrate treated mice. These findings are in agreement with the previously reported result which showed that the administration of Lactobacillus or yogurt to young mice enhanced lung clearance of P. aeruginosa and phagocytic activity of alveolar macrophages [13].

Villena et al [14] found that pneumococcal colonization of lung and bacteremia were significantly greater in control group mice compared with the Lb. casei pretreated group. Although the number of bacteria in lungs and blood stream tended to decrease (P < 0.05) during infection in Lb. casei pretreated group mice, they suggested that the addition of L. casei to the repletion diet has a beneficial effect because it accelerates the recovery of the innate immune response and improves the specific immune mechanisms against Streptococcus pneumoniae respiratory infection in malnourished mice.

A limited number of animal studies were conducted on the effect of LAB on macrophages. Goulet et al [15] found that phagocytic activity of alveolar macrophages was significantly (P < 0.05) higher in mice fed milk fermented with L. acidophilus and L. casei than in control mice fed ultrahigh-temperature-treated milk. Perdigon et al [2] showed that feeding milk (100 µg protein/d) fermented with L. casei and L. acidophilus, or both for 8 d. increased the in vitro and in vivo phagocytic activity of peritoneal macrophages. Other studies in which reconstituted lyophilized LAB were administered orally or intraperitoneally showed enhancement of macrophage activation by LAB [16].

These observations reviewed together suggested that specific immunomodulatory properties of probiotic bacteria should be characterized during the development of clinical applications for extended target populations. Further experiments are required to establish the mechanism by which Lb. gasseri filtrate affects P. aeruginosa pathogenicity. In the future, the immunological aspects of the protective role of Lb. gasseri filtrate should be studied.

References
2. Perdigon, G.; de Macías, M.E.; Alvarez, S.; Oliver, G. and Holgado, AP. (1998), Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus, Immunology, 63: 17–23,

Fig.(1): The growth of the bacteria in the peritoneal cavity after 12 h.