تحضير متراكم بولي فايبر كلاورايد (PVC) باستخدام طين البنونتAyia (PVC) حيث حضر مسحوق البنونتAyia (PVC) لمقياس حبيبي (150,75(μm) وأجريت عليه عمليات تحضير بدرجات حرارية مختلفة (300،700،900) 0+3°C. ثم جُسلت بذرة البروتين كلاورايد باستخدام تكرار كلاستينوس تحت التسخين غير المباشر. بعد ذلك تم إضافة البنونتAyia كلاورايد إلى محلي أشجار الخيزران والذج، والذج المائي والذج المائي والذج المائي. عملياً، وجد أن استخدام البنونتAyia كلاورايد بعد تطور بذرة البروتين كلاورايد يحقق أفضلية تأثيره على تحسن الأداء الحراري، والذج المائي والذج المائي. هذه النتائج تظهر أن استخدام البنونتAyia كلاورايد للذج المائي والذج المائي والذج المائي يمكن أن يحسن الأداء الحراري بشكل أفضل من استخدام البنونتAyia كلاورايد بعد تطور بذرة البروتين كلاورايد.

الخلاصة:

استُخلص أن البنونتAyia كلاورايد يمكن استخدامه في تحضير بذرة البروتين كلاورايد بشكل أفضل من استخدام البنونتAyia كلاورايد بعد تطور بذرة البروتين كلاورايد. وجدت النتائج أن استخدام البنونتAyia كلاورايد بعد تطور بذرة البروتين كلاورايد يمكن أن يحسن الأداء الحراري بشكل أفضل من استخدام البنونتAyia كلاورايد بعد تطور بذرة البروتين كلاورايد.

الكمات المفاهية: مواد مركبة PVC، طين البنونتAyia (PVC)
الببتونيات العراقي تم تحضير ثلاث عينات من الببتونيات العراقي وذلك بإضافة عملية حرارية حيث تم إذابة الببتونيا مثل ما ذكر في فرن كهربي مكون من عينتين من المائدة (Naber therm) . ثم أجريت عملية التحميل باستخدام تقنية التحميل بالكرات لمدة 7hr ثم جففت بدرجة حرارة 110 °C لمدة 2hr أجريت عملية التحميل وذلك لأغراض تصنيف المقياس الهبوبوفي等多项 أخذ منها. حيث استخدم من مقياس الحبيبي المحترق (Micro-Prazisossieb) D<150 μm و D<75 μm للعينة حصر حمول بولي فانيلاي الكحول 100 ml بإضافة 0.0125g منه لكل 100 ml ماء مقابل وизмجرة جيداً باستخدام خلايا مغناطيسي بدرجة حرارة 80°C دالة أس هيدروجيني 3 ونالك بالإضافة قطارات من حامض الهيدروكلورد الكحول [8]. ثم أضيفت من الببتونيات العراقية المعروفة ككريستال많 هي 25gm تدريجياً إلى محلول بولي فانيلاي الكحول واسمير المجزع الداخلي لحمن الحصول على محلول منجس على شكل طين رقيق القوام ذي لوزه عاليه يتم عملية التحميل على وفق الطريقة المعتمدة من [10]. بعدما جفت المادة وُجِّرت و أجريت عملية النخل للحصول على المقياس الحبيبي (M: Montmorilloite. Att: Attapulgite.)

يوضح الشكل (1) العلاقة بين ضعف زاوية الحيوذ (2) على المحرور السبين والشدة على المحرور الصادري، وذلك لتحديد التركيب المعين لمادة مسحوق الببتونيات العراقية بواسطة جودة الاشعه السبين (XRD) والشكل (2) يوضح تحليل الاشعه تحت الحمراء (IR) لمادة مسحوق الببتونيات العراقي

جدول (1) التحليل الكيميائي لحام الببتونيات العراقي.

<table>
<thead>
<tr>
<th>العامل</th>
<th>النسبة المولية</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>56.77</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>26.2</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>8.12</td>
</tr>
<tr>
<td>CaO</td>
<td>4.48</td>
</tr>
<tr>
<td>MgO</td>
<td>3.42</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.59</td>
</tr>
<tr>
<td>Cl</td>
<td>1.11</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.6</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.65</td>
</tr>
<tr>
<td>L.O.I</td>
<td>0.49</td>
</tr>
</tbody>
</table>

(الفقدان بسبب الحرق)

جدول (2) التحليل المعدني لحام الببتونيات العراقي.

<table>
<thead>
<tr>
<th>المعدن</th>
<th>النوع المعدني</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montmorillonite</td>
<td>Clay minerals</td>
</tr>
<tr>
<td>Pfyorsktite</td>
<td></td>
</tr>
<tr>
<td>Apatite</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td></td>
</tr>
<tr>
<td>Halite</td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
</tr>
<tr>
<td>Non-clay minerals</td>
<td></td>
</tr>
</tbody>
</table>

(الطيف المعدني)

العنوان العلمي:

المراجع:

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10].

المجلة: مجلة بغداد للعلوم.

العدد: 9(3)

السنة: 2012
تحضير مترابك بولي فايبر كوريا يد - بنتونيات

عملية تحليل مادة المتاح المسحوق البينتوتتي العراقي

المناطق المتجانسة وخلال عملية التسخين والمزج

تم توصيف مادة المستعملة من خلال PVC (IR) تحليل (IR) 무소 (3) وبعد ذلك تم استعمالها بوصفها مادة الأساس. إذ تم اخذ 25g منها وأنتجت بواسطة سايكولوكس، وتمت الأذنه بدرجة حرارة 80°C وذلك باستخدام حمام ماء وخلط ميكانيكي ذي ريشة زجاجية (Heidolph RZR 2050 electronic).

تدور بسرعة 450 rpm، وباستمرار المزج أصبح لدينا مستحلب حليبي اللون متجانس. إن إضافة كمية أكبر من الذنب متانة لمعالجة مشكلة طبيعية توزيع حبيبات مادة الصلب المستعملة تكون تحوتي على عدد كبير من مقاطع الجزيئات التي هي أقل من 75% و التي هي أقل من 150 μm من ثم فين إضافتها إلى مكون ذي لزوجة واطنة بديء

الأمر هو تمكين المسحوق من سهولة انتشاره في الوسط البوليمري وتكون في البيئة، على أن يكون في مواقع من خلال عملية التسخين والمزج

الذي يقوم بمهمة تخليذ الذنب إلى أعلى نسبة وتحظى مترابك ذو لزوجة بأعلى قيمة ممكنة عملية الصب. اضافة كمياث تدريجية من المسحوق البينتوتتي المعالج مادة إلى مادة الأساس المحضرة بعد تحقيق حالة PVA

شكل (2) تحليل الأشعة تحت الحمراء (IR) لمادة المسحوق البينتوتتي العراقي

المراجع:
[3](ASTM D647-68-72)
العلاقة (1)

\[K = \frac{2(d_A + d_B)T_A}{r} \left[\frac{T_B - T_A}{2r} \right] \]
النتائج والمناقشة:

من ملاحظات الشكليتين (4 و5) الذين يمثلان علاقة تغير قيم التوسليتين الحرارية "C stakeholders" مع PVA، نستطيع تنفيذ جرحية التحديص لمسحوق البينوتيت بمقاس حبيبي 75 μm و 150 μm بدرجة حرارة 120°C، مما يعني أن النماذج ذات المقياس الحبيبي 75 μm و 150 μm أعطت توصيلية حرارية أعلى من النماذج ذات المقياس الحبيبي 75 μm سواء قبل التحديص أو بعد ولمختلف مدى التحديص الحربي. ومجموعها نفسها كانت التوصيلية الحرارية لنظام التحديص بالحربية عامة على النماذج وعما هو بعد التحديص سواء باستخدام المقياس الحبيبي 75 μm أو 150 μm. كذلك فقد انخفضت حالة تحول بقية التوصيلية الحرارية، إذ بعد هذه القيمة انخفضت التوصيلية الحرارية عن طريق نظام التحديص الحربي. وتعتبر الدراسات (16) أن تغير قيم المسامية الوضوحية والكثافة الحربية وامتيازية ماء مع تغير درجة التحديص لمسحوق البينوتيت بمقاس حبيبي 75 μm و 150 μm يمكن تفسير هذه الفترات على وفق ما يلي:

- البينوتيت معاكس حبيبي ونعنوت معاكس حبيبي عن حبيبي معاكس حيث تحتوي على مستويات بداخل تكوينها ما يجعلها خزان حاراً في منص الحربية وبدونه يدعي الخليط الذي تتأثر، وللتيار نفسه المستقل من كمية السعرق نحصل على نسبة مسامية في الجسم معاكس حبيبي. مع البينوتيت معاكس حبيبي، وهذا خلق نوع مختلف من التوصيليات الحربية عبر الوسط في حين الحبيبيات معاكس حبيبي 75 μm تكون نسبة المسامات فيها أقل ونن تكوين التوصيلية الحرارية أقرب. ويمكن استقراء هذا الاستنتاج من إلا الجدول التالي:

<table>
<thead>
<tr>
<th>المقياس الحبيبي (μm)</th>
<th>R.T. 120°C</th>
<th>120°C (W/m.K)</th>
<th>0.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>150</td>
<td>0.278</td>
<td>0.211</td>
</tr>
<tr>
<td>75</td>
<td>150</td>
<td>0.13</td>
<td>0.211</td>
</tr>
</tbody>
</table>

وقد تم قياس النماذج في ظروف (W/m K) درجة حرارة الغرفة وربما نتبتي بوجود سائم لكل نموذج مع المقياس الحراري.blue اثناء عدم النماذج رئيبراء فإن الطقس.

- فحص مادة ومعامل المرونة:

(Stress Strength) σ و(Stress Modulus) Y و(Stress Test metrics) (15) :

(3) \[\sigma = \frac{F}{A} \]

حيث σ يمثل إجهاد الشد و(4) \[\varepsilon = \frac{\Delta L}{L_0} \]

حيث ε يمثل مطاطة الشد.

\[\varepsilon = \frac{F}{A} \]

حيث Y يمثل معدل بونك للمرنة و(5) \[\varepsilon = \frac{\Delta L}{L_0} \] وهو

(3) \[\sigma = \frac{F}{A} \]

(6) \[A.P = \frac{W_S - W_d}{W_S - W_i} \]

حيث A.P = تطبيق المعادلة الأتية: (17)

(7) \[B.D = \frac{W_d}{W_S - W_i} \]

(8) \[W.A = \frac{W_S - W_d}{W_S - W_i} \]

حيث درجة الحرارة و(8) \[W.A = \frac{W_S - W_d}{W_S - W_i} \]

(9) \[W.A = \frac{W_S - W_d}{W_S - W_i} \]

حيث ρ يمثل كثافة السائل.

(10) \[W.A = \frac{W_S - W_d}{W_S - W_i} \]

حيث (W/m K) درجة حرارة الغرفة وربما نتبتي بوجود سائم لكل نموذج مع المقياس الحراري.blue اثناء عدم النماذج رئيبراء فإن الطقس.

- فحص مادة ومعامل المرونة:

(Stress Strength) σ و(Stress Modulus) Y و(Stress Test metrics) (15) :

(3) \[\sigma = \frac{F}{A} \]

حيث σ يمثل إجهاد الشد و(4) \[\varepsilon = \frac{\Delta L}{L_0} \]

حيث ε يمثل مطاطة الشد.

\[\varepsilon = \frac{F}{A} \]

حيث Y يمثل معدل بونك للمرنة و(5) \[\varepsilon = \frac{\Delta L}{L_0} \] وهو

(3) \[\sigma = \frac{F}{A} \]

(6) \[A.P = \frac{W_S - W_d}{W_S - W_i} \]

حيث A.P = تطبيق المعادلة الأتية: (17)

(7) \[B.D = \frac{W_d}{W_S - W_i} \]

(8) \[W.A = \frac{W_S - W_d}{W_S - W_i} \]

حيث ρ يمثل كثافة السائل.

(10) \[W.A = \frac{W_S - W_d}{W_S - W_i} \]

حيث (W/m K) درجة حرارة الغرفة وربما نتبتي بوجود سائم لكل نموذج مع المقياس الحراري.blue اثناء عدم النماذج رئيبراء فإن الطقس.

- فحص مادة ومعامل المرونة:

(Stress Strength) σ و(Stress Modulus) Y و(Stress Test metrics) (15) :

(3) \[\sigma = \frac{F}{A} \]

حيث σ يمثل إجهاد الشد و(4) \[\varepsilon = \frac{\Delta L}{L_0} \]

حيث ε يمثل مطاطة الشد.

\[\varepsilon = \frac{F}{A} \]

حيث Y يمثل معدل بونك للمرنة و(5) \[\varepsilon = \frac{\Delta L}{L_0} \] وهو

(3) \[\sigma = \frac{F}{A} \]

(6) \[A.P = \frac{W_S - W_d}{W_S - W_i} \]

حيث A.P = تطبيق المعادلة الأتية: (17)

(7) \[B.D = \frac{W_d}{W_S - W_i} \]

(8) \[W.A = \frac{W_S - W_d}{W_S - W_i} \]

حيث ρ يمثل كثافة السائل.
إذ إن المسامية الظهارية تفتقر للجسم المتراكب الذي مصطفوته البوليمر والذي أدى أنه جسم غير مسامي. ومن ثم فإن مصدر التوصيل الحراري هو تتيح هب نسبة المسامات داخل الحبيبات المكثكة، والذي أنسح حرارة أكبر نتيجة وجود هذه المسامات المخلطة الهواء. إن لظروف المعاملة الحرارية لغازات ضغط 700°C أدت إلى تحرر الغازات المنزرة على سطح حبيبات الطين ولكنها لم تدفع إلى خارج النموذج وهذه مشاهدة عبائية للمعالج ذات السمك الأكبر قد أدى إلى تبقت قيمة المسامية الظهارية معاز ذلك بنتائج الاصطناعية حيث أظهرت تجربة بألب المقتربة كما في الشكل (8) إن هذا السلوك سبب زيادة في التوصيل الحراري وكذلك تمتد النموذج وما انعكس في نتائج الكثافة الحجمية حيث قلت أما حصول الانقلاب بعد درجة حرارة التحصيص 700°C متيني من عدة أسباب، فتتكون مساحة مخزنة من خروج الرطوبة وروابط المكونات البليورسية بنية كبيرة جدا وهذا يترك فائضات داخلي المكون الطيني، وهناك فائضات صفيحة تحصل نتيجة تكرار المتمورالينات في البلاستيك. بعد هذه الحرارة تنكسر تتحول طورية في المتمورالينات والكاملات والتجارب المصاحبة، أي تقوم عملية تحول مثل α-Quartz و تقلص Tridmate مما يؤدي إلى تفصيل المسامات الظهارية[18]. زيادة في قيمة المسامية الظهارية حيث تكون مساحات مخلطة على سطح النموذج وما يعزز هذا الاستنتاج النتيجة التي أعلنت الاصطناعية حيث زادت إن خروج القلاعات من جسم النموذج سبب في كتلهما النموذج وبالتالي زيادة في الكثافة الحجمية وهذا ما انعكس على التوصيل الحراري حيث قلت.

الشكل (6) المسامية الظهارية لمتراكب بوليمر PVA بوصفها دالة لدرجة حرارة التحصيص.(75 µm)

<table>
<thead>
<tr>
<th>Calcination Temperature (°C)</th>
<th>Apparent Porosity % for (D ~ 75 µm)</th>
<th>Apparent Porosity % for (D ~ 150 µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>400</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

الشكل (7) الكثافة الحجمية لمتراكب بوليمر PVA بوصفها دالة لدرجة حرارة التحصيص.

<table>
<thead>
<tr>
<th>Calcination Temperature (°C)</th>
<th>Bulk Density (gm/cm³) for (D ~ 75 µm)</th>
<th>Bulk Density (gm/cm³) for (D ~ 150 µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.3</td>
<td>1.35</td>
</tr>
<tr>
<td>200</td>
<td>1.4</td>
<td>1.45</td>
</tr>
<tr>
<td>400</td>
<td>1.5</td>
<td>1.55</td>
</tr>
<tr>
<td>600</td>
<td>1.6</td>
<td>1.65</td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

الشكل (5) التوصيل الحراري لمتراكب بوليمر PVA بوصفها دالة لدرجة حرارة التحصيص.(المقياس الحبيبي لمساح البنتونيت

(75 µm)

<table>
<thead>
<tr>
<th>Thermal Conductivity (w/m · K)</th>
<th>Calcination Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before drying</td>
<td>After drying</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

الشكل (4) التوصيل الحراري لمتراكب بوليمر PVA بوصفها دالة لدرجة حرارة التحصيص.(المقياس الحبيبي لمساح البنتونيت

(150 µm)
مكرون المضاف (بتونات) يبدأ تأثير عامل الربط للمتراسب في الخصائص الميكانيكية التي أظهرت سلوك تأثير قيمة المائة للبوليمير بوصفه مصفوفة للمتراسب.

شكل (9) مثابة الإجهاد لتمتراسب بوليمر- بتونات معالج بمادة PVA يوصيفها دالة لدرجة حرارة التحسين.

الاستنتاجات:
إن استعمال الببتونات العراقية المعلجة بمادة PVC ملء بوليمير PVC أطغى توصيلية حرارية PVC بحدود 0.5 مك.كل K مقاومة بالقيمة لمادة PVC وحدة. كما يأتي خصائص مائدة للمتراسب بغازة مائدة. فترة تأثير قيمة المائة المتأثرة لمجلة باقلدية

(10) عملياً وجناية calmly زاد تأثير المادة السيراميكية الى زيادة معدل المرونة لفواحة والív اصناز في الأسس تجاوب اكنت بعد كنا كذا كان المائي الحبيبي كان كما تحلل المكلفة في الجزء الزائرية الحرارية والاختلافات الميكانيكية.

..عسح شبكة حافة لمدة لقيقة المرونة وعند اكتئاب التحولات الطورية في ضمن

سماك (8) امتتصاصية الماء لتمتراسب بوليمر- بتونات معالج بمادة PVA يوصيفها دالة لدرجة حرارة التحسين.

إن القيمة المغامرة مثابة الأجهزة اللوبلي فاين كلوراً يد هي 24.6 MPa عند نقطة الضغوط 100% [19] . إن النتائج التي تم الحصول عليها نتيجة اضافية طين الببتونات العراقية المعالج بمادة سوأ ياستعمال مقياس حبيبي من PVA أو PVA 75 μm و PVA 150 μm ووهو مصدره بسبب مسألة الطيال الببتونات وكذلك يستعمل تراكيز في ضمن حدود الموصدة التي ترجف قيمة الخصائص الميكانيكية لهذه السهم كما يوضح الشكل (9) وهذا ينفع ما حصل عليه من أخر [20] . يوجد ان تزويد خاصية مثابة الإجهاد لتمتراسب وليموناتيا في PVA عندما يتمتع (ملعقة مازا) مع مادة من 70000-80000 w/mk وزن جزيني w PVA مادة يؤدي إلى زيادة مثابة الإجهاد ونسبة PVA ونسبة أكبر مما لا استعمال وزن جزيني واطن mw PVA. لجته الإجهاد للطيب تنزيد من (40000) m. مثابة الإجهاد للطيب تنزيد من 30g إلى 1.2 MPa عند اضافية 5.6 MPa إلى 100 g من الطين الصوديومي PVA ما وعند استعمال g 0.5 لكل (Na-clay) من الطين الكلاسيكي Ca- (clay) في المرونة للتمتراسب مع تغير درجة حرارة التحسين للمتراسب توسيع قيمة المرونة كما أزدادت قيمة المرونة لغاية 700°C في حين كان التراكم في الشتاء المعلجة بطبق بتونات داعمي حبيبي PVA 150 μm كنا شكل.

..عسح شبكة حافة لمدة لقيقة المرونة وعند اكتئاب التحولات الطورية في ضمن
المصادر:

4- آل أمير كوركيس عبد كافش الغطاء، حسين على 1983 "كيمياء وكمية البوليمرات جامعه البصرة/كلية العلوم.

9- A : \ Mechanical % 20AND% 20 Chemical % 20 Properties % 20 OF % 20 Plastics 2004 " Mechanical and chemical properties of plastics materials "

Preparation of PVC composite using reinforced Iraqi Bentonite clay as a filler & study their mechanical and thermal properties

Foaad SH. Hashim*

*Physics Department, college of education for Pur Science, Babylon university, Hilla, Iraq

Abstract:
In this study, Iraqi Bentonite clay was used as a filler for polyvinyl chloride polymer. Bentonite clay was prepared as a powder for some certain particle size, followed by calcinations process at (300, 700, 900) °C, then milled and sieved. The selected sizes were D ~75 µm and D ~150. After that polyvinyl Al-Coohool solution prepared and used as a coated layer covered the Bentonite powder before applied as a filler, followed by drying, milling and sieving for limited recommend sizes. Polyvinyl chloride solutions were prepared and adding of modified Bentonite powder at certain quantities were followed. Sheet of these variables on the mechanical and thermal properties of the prepared reinforced particular polyvinyl chloride composite. Experimentally, it was found that the composite prepared by adding modified Iraqi Bentonite powder, that calcined at 700 °C as a filler have an advantage in heating insulator properties by 30% from that found for PVC as it is, and the value of stress strength exceed by three times as that for original value.