The relationship of Adiponectin / Leptin ratio with metabolic syndrome

Kismat M. Turki* BSc, PhD
Suma H. Mohammed** BSc, MSc
Zina H. Abdul-Qahar* FICMS (Chemical Pathology)

Summary:
Background: Metabolic syndrome is a cluster of risk factors for atherosclerotic cardiovascular disease caused by abdominal obesity, such as hyperglycemia, hypertension, dyslipidemia, and insulin resistance. Adiponectin is a protein hormone that modulates a number of metabolic processes, including glucose regulation and fatty acid catabolism. Adiponectin is exclusively secreted from adipose tissue into the bloodstream. Leptin, a hormone synthesized by fat tissue, has been noted to regulate energy balance and metabolism. In this study, the relationships of adiponectin/leptin ratio with metabolic syndrome in apparently healthy Iraqi male adults were investigated.

Objective: This study was designed to investigate the relationship of adiponectin/leptin ratio with metabolic syndrome in apparently healthy Iraqi male adults.

Methods: Ninety male subjects were enrolled in the study (mean age, 40.97 ± 7.94 years). Serum leptin level and adiponectin level were measured using an enzyme-linked immunosorbent assay. The presence of metabolic syndrome was assessed.

Results: Mean leptin level was significantly higher (7.29 ± 0.38 ng/ml), while adiponectin and adiponectin/leptin ratio was significantly lower (4.78 ± 0.24 µg/ml; 0.74 ± 0.07) respectively in subjects with MS. With increasing number of metabolic syndrome components, the mean values of leptin increased and the adiponectin and adiponectin/leptin ratio decreased.

Conclusion: Adiponectin/leptin ratio correlated well with the presence and number of metabolic syndrome components in Iraqi male subjects.

Keywords: Adiponectin/leptin ratio; metabolic syndrome.

Introduction: The metabolic syndrome (MS) is one of the leading public health issues around the world (1). The prevalence of MS is increasing in parallel with obesity and diabetes worldwide (2). Among the various criteria for the identification of MS, its major components are atherogenic dyslipidemia, insulin resistance, hypertension, and abdominal obesity (3). MS is associated with an increased risk of coronary artery disease (CAD) and type 2 diabetes mellitus (DM). It is also known that abdominal obesity and insulin resistance play a central role in MS (4). In recent years, attention has focused on the visceral adipose tissue due to the presence of many adipokines synthesized and released from adipocytes (5-6). It is known that visceral adipose tissue functions as a paracrine and an endocrine organ and secretes a number of adipokines which have anti-inflammatory, atherogenic, or protective effects, including leptin, adiponectin, tumor necrosis factor-α (TNF-α), resistin, interleukin-6, and fatty acid binding protein 4 (7). Two adipokines, leptin and adiponectin, have been recognized as key regulators of various metabolic disorders (8). The ratio of adiponectin and leptin has also been reported to be associated with insulin resistance, which is considered to be one of the pathophysiological conditions underlying MS (9).

Adiponectin is an adipocyte-derived hormone with antiatherogenic, antidiabetic, and anti-inflammatory properties. It suppresses insulin resistance by increasing insulin sensitivity of the liver. In muscle, adiponectin enhances glucose utilization and fatty acid oxidation. In addition, adiponectin increases endothelial nitric oxide (NO) secretion and inhibits monocyte adhesion and smooth muscle cell proliferation in the vascular wall (10). Leptin is an anorexogenic hormone which is predominantly produced in adipose tissue (11). In addition to its effect on neuroendocrine, immune and reproductive systems, leptin regulates food intake, body weight, and energy homeostasis (12). Increased adiposity was shown to be associated with hyperleptinemia, which subsequently causes endothelial dysfunction, hypertension, and cardiovascular diseases (13). In this study, we investigated the relationships of A/L ratio with cardiovascular risk factors, and the presence of metabolic syndrome in apparently healthy Iraqi male adults.

Materials and Methods:
Ninety apparently healthy, Iraqi middle-aged men were recruited for the study during the period from 1st December, 2010 to 1st June, 2011. Subjects were classified into five groups: Control group (n
The relationship of Adiponectin / Leptin ratio with metabolic syndrome

Kismat M. Turki

First group (n = 20) :- (obese). Second group (n = 20) :- (obese + ↑ TG or ↓ HDL). Third group (n = 20):- (obese +↑ TG + ↓ HDL). Fourth group (n = 10):- (obese +↑ TG + ↓ HDL + hypertension).

The presence of metabolic syndrome was defined according to the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) diagnostic criteria (14).

Results:
The mean levels of leptin increased significantly (P < 0.01) while the A/L ratio and adiponectin decreased significantly (P < 0.01, P < 0.01) with an increasing number of MS components. As showed in table (1).

The mean levels of leptin in subjects with MS were significantly higher than in those without MS (Table 2). In addition, subjects with MS (n = 30) showed a significantly lower A/L ratio compared with that of subjects without MS (n = 60) values being (0.73 vs1.50; p = 0.0001). The mean level of adiponectin was significantly lower in subjects with MS compared with the subjects without MS (4.78 vs7.05; p = 0.0001) (Table 2).

Table 1: (Mean ± SD) of, Adiponectin, Leptin and A/L ratio of the studied groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Groups</th>
<th>G1 (n=20)</th>
<th>G2 (n=20)</th>
<th>G3 (n=30)</th>
<th>G4 (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adiponectin ng/mL</td>
<td>Control (n=20)</td>
<td>7.85 ±1.59</td>
<td>7.25 ±0.8</td>
<td>6.04 ±1.3</td>
<td>5.40 ±1.0</td>
</tr>
<tr>
<td>Leptine μg/mL</td>
<td>3.95 ±0.94</td>
<td>5.33 ±0.7</td>
<td>6.19 ±1.6</td>
<td>7.05 ±2.4</td>
<td>7.78 ±1.0</td>
</tr>
<tr>
<td>A/L ratio</td>
<td>2.06 ±0.48</td>
<td>1.39 ±0.2</td>
<td>1.05 ±0.4</td>
<td>0.88 ±0.3</td>
<td>0.45 ±0.1</td>
</tr>
</tbody>
</table>

ANOVA: MS groups vs normal control.

** (P < 0.01), NS: not significant. A/L: adiponectin/leptin ratio.

Table 2: The comparison of mean adipokine levels, A/L ratios according to the presence or absence of metabolic syndrome components.

<table>
<thead>
<tr>
<th></th>
<th>Adiponectin ng/mL</th>
<th>Leptin μg/mL</th>
<th>A/L ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>With MS n=30 (33.33%)</td>
<td>4.78 ±0.24</td>
<td>7.29 ±0.38</td>
<td>0.74 ±0.07</td>
</tr>
<tr>
<td>Without MS n=60 (66.67%)</td>
<td>7.05 ±0.19</td>
<td>5.16 ±0.19</td>
<td>1.50 ±0.07</td>
</tr>
</tbody>
</table>

**highly significant differences (P <0.0001); A/L ratio: adiponectin/leptin ratio; MS: metabolic syndrome.

Discussion:
Metabolic syndrome (MS), a cluster of metabolic disorders such as obesity, hypertension, dyslipidemia, and hyperglycemia, increases the risk of developing atherosclerotic diseases such as cardiovascular disease (CVD) (15). In this study, A/L ratio was significantly higher in those with MS compared with that in participants without MS which is in agreement with few studies performed in Asian participants (16). Obesity is characterized by hyperleptinemia and adiponectin levels decrease considerably during weight loss and are positively associated with body mass index (BMI) (17). Obesity is also characterized by hypoadiponectinemia, because adiponectin is inversely correlated with BMI (18). In MS patients, the levels of serum adiponectin are decreased (19). In a study performed with 2,046 Chinese adults, leptin/ adiponectin (L/A) ratio showed a higher odds ratio inpatients with MS and a higher area under the curve in patients with MS compared with those of adiponectin or leptin alone, suggesting the possibility that the L/A ratio can be a better diagnostic marker for MS than leptin or adiponectin individually (20). In a study performed on 60 Korean adults with type 2 diabetes, participants with MS showed a lower A/L ratio compared to those without MS (21). Also Yutaka, et al., 2010 study disclosed factors associated with the increase in serum leptin and adiponectin, he mentioned that serum levels of leptin may be associated positively with MS, whereas adiponectin levels are associated negatively with MS and CAD, even in patients with various coronary risk factors (22). The present study results are in line with the previous studies in that the presences of MS lead to decreased A/L ratio. Interestingly, the A/L ratio was significantly higher in patients with metabolic syndrome compared with its counterpart. A/L ratio decreased as the number of metabolic syndrome components increased (23). So these data support the association of this novel ratio as the prediction marker for MS in Iraqi people. Leptin and adiponectin are individually known to be involved in the pathogenesis of obesity and MS (24, 25). Under such an obesity-related condition, the leptin levels are higher and adiponectin levels are lower, and thus, the A/L can be relatively low (8). This fact seems to explain the results obtained in the present study. These datasuggest that A/L ratio decreased in subjects with MS and gradually decreased according to the number of MS components, suggesting A/L ratio as the predictive marker for MS in the Iraqi population. Further research is needed on the confirmation of A/L ratio as the marker for insulin resistance index and MS in various ethnic groups before application to clinical practice.

References:
Alberti KGMM, Eckel RH, Grundy SM, et al., 2009. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and
The relationship of Adiponectin / Leptin ratio with metabolic syndrome

Kismat M. Turki

Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120: 1640-1645.

