A study of high sensitivity c-reactive protein, fibrinogen, troponin I and lipid profile in patients with acute myocardial infarction

M B Ch. C.
Rana A. Al-Duhaimi
Ministry of Health
/Babylon Health Direction

Assistant Professor
Dr. Moaed E. Al-Gazalyally
Department of Biochemistry
College of Medicine/Babylon University

Assistant Professor
Dr. All’a’a H. Abbas Haidar
Department of Medicine
College of Medicine/Babylon University

Abstract:
This study was conducted on 70 patients with acute myocardial infarction (52 males, 18 females) and 30 (22 males, 8 females) apparently healthy subjects were taken as control group from October 2010 till August 2011. Blood collected in coronary care unit at Merjan Teaching Hospital in Hilla city within 12 hours of myocardial infarction attack and all the subjects were fasting at time of sample taking. The patients were diagnosed as having AMI depending on positive troponin I tests ECG finding plus clinical features of AMI. The sera obtained from the patients were used to determine the effect of AMI on high sensitivity c-reactive protein (hsCRP), fibrinogen, troponin I, total cholesterol, high density lipoprotein-cholesterol (HDL-C), triglycerides (TGs), very low density lipoprotein-cholesterol (VLDL-C), and low density lipoprotein-cholesterol (LDL-C) concentrations. The results show a highly significant increase in high sensitivity c-reactive protein (hsCRP), fibrinogen, troponin I, total cholesterol, triglycerides, very low density lipoprotein-cholesterol and low density lipoprotein-cholesterol concentration (p<0.001), while highly significant decrease in high density lipoprotein-cholesterol (p<0.001) in sera of patients group compared to control group, also the results of this study showed positive significant correlation (r = 0.30, p<0.01) between increment of hsCRP and fibrinogen in patients group on other hand positive but not significant correlation (r=0.044, p=0.05) of the above two parameters in control group.

Conclusion: Acute myocardial infarction associated with elevation of acute phase proteins. HsCRP and fibrinogen combination can be used in prediction of early events of atherosclerosis and post infarction complication and how to prevent them. Lipid profile and quantitative determination of cardiac troponin I are always advisable in post AMI.

الخلاصة:
أجريت هذه الدراسة على سبعين مريض معصب بإحشاء العضلة القلبية الحاد (اثني وخمسة ذكور) واثنينية عشر أنثى وعلى ثلاثين شخصاً مصاباً بإحشاء العضلة القلبية الحاد (اثني وخمسة ذكور) واثنينية عشر أنثى، لمجموعة سطيرة في فترة ممتدة من تشرين الأول سنة 2010 حتى أب سنة 2011. تم الحصول على عينات الدم من المرضى في وحدة انعاش القلب في مستشفى مرجان التعليمي في مدينة المحطة خلال اثني عشر ساعة من حصول إحشاء العضلة القلبية الحاد. أما إن الأشخاص في كليني المرضى ومجموعة السطيرة كانوا في حالة صيام وقت اخذ عينات الدم. تم تشخيص حالة المرضى اعتماداً على اختبارات الترووبين أي الموجود وخطط القلب الكهربائي بالإضافة للميزات الطبية لإحشاء العضلة القلبية الحاد. مصوص الدم الذي تم الحصول عليه استخدمت لدراسة تأثير إحشاء عضلة القلب الحاد على تراكيز بروتين ج المتفاعلين عالي الخطورة والتفاعليات التروبونيين والكليسيديات الثلاثية في معدلات تراكيزة بروتين ج المتفاعلين عالي السمية العالية (p<0.001) في معدلات معاينة عالية. (p<0.001) أظهرت نتائج هذه الدراسة زيادة معاينة عالية، في معدلات تراكيزة بروتين ج المتفاعلين عالي السمية العالية والتفاعليات التروبونيين، الكليسيديات الثلاثية، الكوليسترول الكلي والكوليسترول الكلوي، والكوليسترول الإسترول الكلي، الدهون النباتية والأطعمة الكثافة جداً.
The main cause of myocardial infarction is an inflammatory disease in which immune mechanism interact with metabolic risk factors to initiate, propagate and activate lesions in the arterial tree of the heart [2].

Acute myocardial infarction (AMI) is a clinical state induced by the thrombus formation following the disruption of unstable atherosclerotic plaque [1]. Atherosclerosis, the main cause of myocardial infarction is an inflammatory disease in which immune mechanism interact with metabolic risk factors to initiate, propagate and activate lesions in the arterial tree of the heart [2].

Classical symptoms of acute myocardial infarction include sudden chest pain (typically radiating to the left arm or left side of the neck), shortness of breath, nausea, vomiting, palpitations, sweating, and anxiety [3]. Clinical features are not enough for perfect diagnosis of AMI. ECG changes, echocardiography and serum cardiac markers are more accurate for diagnosis of cardiac damage [4]. The major risk factor for AMI are hyperlipidemia [5], diabetes mellitus [6] hypertension [7], smoking [8], male gender [9] and family History of coronary heart disease [10]. C-reactive protein (CRP) is an acute phase reactant that responds as a sensitive, though nonspecific, marker of systemic inflammation. It’s synthesized by the liver in response to stimuli from circulating inflammatory cytokines [11]. An expanding body of research now indicates that CRP likely plays a direct, active inflammatory role in blood vessels leading to development of atherosclerosis [12]. New researches shows that in the patients with manifested chronic atherosclerotic disease, there is a continuous need for refinement of prognosis by using some of the emerging biomarkers, one of these biomarkers, CRP measured by high-sensitivity assays (hsCRP) [13]. Since the inflammation plays a major role in all stages of atherosclerosis, from lesion initiation to plaque rupture and ultimately, the clinical thrombotic complication, CRP will increase in all these stages and can be measured in high sensitivity assays to evaluate degree of atherosclerosis and its expected future complications [14]. In a recent scientific statement, the centers for disease control and prevention and American Heart Association recommended the following interpretation of hs-CRP results: <1 mg/L low risk, 1-3mg/L average risk, >3mg/L high risk [15]. Fibrinogen is an acute phase protein synthesized by liver, in addition to that it play important role in coagulation cascade [16]. Fibrinogen is well known risk factor for AMI and stroke [17] [18], so high-levels of fibrinogen is one of the dangerous factors contributing to coronary heart diseases [19] [20] [21].

Cardiac specific troponin is a regulatory protein that regulates the contractile apparatus of striated muscle of the heart, this apparatus is made from parallel arrays of thick and thin filaments organized into sarcomeres, contraction is attributable to the sliding of thick filaments past thin filaments that leads to tension producing cross bridges between actin and myosin and force generation. This process is controlled by sarcoplasmic Ca2+ and regulated by troponin and tropomyosin located in the thin filament [22]. Although there are several biomarkers of cardiac damage, troponin I has emerged as the indicator of choice for the detection of cardiomyocyte injury [23] [24] [25]. For accurate diagnosis of patients with suspected acute coronary syndrome, blood levels of troponin must be elevated in a clinical setting of acute myocardial infarction [26]. Cardiac specific troponin I is used as an aid in diagnosis of myocardial infarction since it becomes elevated in the blood approximately 4-8 hours following myocardial injury or necrosis reaches its peak 12 hours and remain elevated for 3-10 days [27]. The major lipids present in the plasma are fatty acids, TGs, cholesterol and phospholipids, are all transported in plasma as lipoprotein particles chylomicrons (CM), very low density lipoprotein-cholesterol (VLDL-C), intermediate density lipoprotein-cholesterol (IDL-C), low density lipoprotein-cholesterol (LDL-C) and high density lipoprotein-cholesterol (HDL-C) [28].
Patients and Methods:

The study was conducted over a period of eleven months from October 2010 till August 2011. Samples collected in coronary care unit in Merjan Teaching Hospital in Hilla city, all the patients were fasting at time of sample taking. The tests were performed in the laboratory of biochemistry department in college of Medicine/Babylon University. This study included seventy patients with AMI whom had positive troponin I tests, ECG with ST-segments elevation in addition to clinical features of AMI and thirty were taken as control group. The patients group included (52 men and 18 women), aged (37-80) year with mean ± SD of 58.46±10.8 year. The control group included (23 men and 7women) apparently healthy individuals aged 28-72 year with mean ± SD 54.23±12.6 year, they were not smoker, free of DM, hypertension and family history of IHD. Venous blood samples were drawn from AMI patients within 12 hours of myocardial infarction attack. Serum hsCRP concentration was determined by DRG International kit (USA). Serum Fibrinogen was determined by Spinreact kit (Spain), Serum Troponin I was determined by VIDAS Troponin I Ultra(TNIU)(France).Serum total cholesterol, triglycerides and HDL-cholesterol concentration were determined by Biolabo SA kit (France). VLDL-cholesterol concentration was calculated by dividing triglycerides value by 2.19 [29]. LDL-cholesterol concentration was calculated by using Friedewald equation [30].

\[
LDL-C \text{ (mmol/L)} = \frac{\text{Total-cholesterol} - \text{HDL-C}}{2.22} \times \frac{\text{TG}}{2.19}
\]

Results:

In this study, we found that all patients with AMI had at least one of the risk factors as shown in table(1):

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>No. of Patients</th>
<th>Percent(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td>54</td>
<td>77.1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>42</td>
<td>60</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>40</td>
<td>57.1</td>
</tr>
<tr>
<td>Family history of IHD</td>
<td>35</td>
<td>50</td>
</tr>
</tbody>
</table>

The results showed a high significant increase in (total cholesterol, triglycerides, VLDL and LDL concentration), while a high significant decrease in HDL concentration in sera of AMI group compared with those of the control group as was shown in table(2)

<table>
<thead>
<tr>
<th>Parameter(mmol/L)</th>
<th>Control(n=30)</th>
<th>Patients(n=70)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cholesterol</td>
<td>3.9 ± 0.43</td>
<td>5.0 ± 0.99</td>
<td>P< 0.001</td>
</tr>
<tr>
<td>HDL Cholesterol</td>
<td>1.3 ± 0.1</td>
<td>1.0 ± 0.6</td>
<td>P< 0.001</td>
</tr>
<tr>
<td>Triglycerids</td>
<td>0.8 ± 0.3</td>
<td>1.6 ± 0.6</td>
<td>P< 0.001</td>
</tr>
<tr>
<td>VLDL-Cholesterol</td>
<td>0.4 ± 1.0</td>
<td>0.7 ± 0.3</td>
<td>P< 0.001</td>
</tr>
<tr>
<td>LDL-Cholesterol</td>
<td>2.3 ± 1.0</td>
<td>3.3 ± 0.3</td>
<td>P< 0.001</td>
</tr>
</tbody>
</table>

HsCRP, Fibrinogen and Troponin I concentrations were measured in sera of seventy patients and thirty healthy (control group). The results showed a significant increase in above parameters
Scientific . 2012
Journal of Kerbala University , Vol. 10 No.3 Scientific . 2012

Concentrations in sera of patients group compared with those of the control group as was shown in table (3).

Table (3): Serum hsCRP, Fibrinogen, Troponin I concentration in AMI patients and control group.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control(n=30)</th>
<th>Patients(n=70)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsCRP (mg/L)</td>
<td>0.79 ± 0.4</td>
<td>3.6 ± 1.6</td>
<td>P< 0.001</td>
</tr>
<tr>
<td>Fibrinogen (mg/dl)</td>
<td>257.2±48.6</td>
<td>440.7±171.6</td>
<td>P< 0.001</td>
</tr>
<tr>
<td>TroponinI(µg/L)</td>
<td>0.003±0.002</td>
<td>22.8 ±3.34</td>
<td>P< 0.001</td>
</tr>
</tbody>
</table>

The results of linear regression analysis showed significant positive correlation \(r = 0.30, p<0.01 \) in serum hsCRP concentration with fibrinogen concentration in AMI patients group, non significant positive correlation \(r =0.044, p>0.05 \) between them in control group as was shown in figures (1) and (2).

D iscussion:
Smoking, hypertension, diabetes mellitus and family history of ischemic heart disease were the major risk factor for AMI and this in agreement with many studies[31].One of the major findings of the present study was the significant increase in serum hsCRP concentration observed in AMI group compared to those control group. The results of the present study were in agreement with Liuzzo et al. study[32], this study measured hsCRP in 31 patients with severe unstable angina, and 29 patients with AMI,20 out of 31 patients of unstable angina had level of hsCRP ≥3.0 mg/l,22 out of 29 patients with AMI had level of hsCRP ≥3.0 mg/l, in both groups patients with hsCRP≥ 3.0 mg/l were more prone to further ischemic episodes and death in comparison with those of hsCRP level less than 3.0 mg/l whom had good prognostic value. Several studies show that there’s association between AMI attacks and increment of hsCRP level and even use it as a marker of cardiac damage and as prognostic value, since the inflammation plays a major role in all stages of atherosclerosis , from lesion initiation to plaque rupture and, ultimately, the clinical thrombotic complication [14], also the results of present study show a high significant increasing in fibrinogen concentration in sera of AMI patients group compared to those control group. Fibrinogen has a well-documented association with cardiovascular disease; plasma concentration of total fibrinogen show strong relationship with myocardial infarction [33].The results of this study are in agreement with Laurance P. study[34], this study show a strong relationship between myocardial infarction and increase level of fibrinogen , the difference between the mean of plasma fibrinogen level of patients with AMI and control group can be explained by its behavior as an acute phase reactant which is increased after inflammation, tissue necrosis and any condition of Oxidative stress [35].The positive correlation between fibrinogen and hsCRP concentrations in sera of patients group referred to their nature as acute phase reactant proteins which can be increased in any condition induced by
inflammation or tissue damage or necrosis as myocardial infarction [36], and this in agreement with Louise J Maple et al study [37] which was set up to investigate correlation of hsCRP concentration with fibrinogen in sera of patients with AMI. The results of this study show marked and significant positive correlation between the two parameters above. The result of present study show significant increase in Troponin I level in sera of patients with AMI when compared with those control group, presence of cardiac specific Troponin I in circulation is a very important predictor for presence of cardiac cells damage or necrosis [38]. These results in agreement with Monica et al study [39] which showed significant increase in cardiac specific Troponin I in sera of patients with AMI. The results of this study show significant increase in total cholesterol, triglycerides, LDL-Cholesterol, VLDL-Cholesterol and significant decrease in HDL-Cholesterol concentrations in sera of patients with AMI when compared with those of control group. Lipid profile is a useful tool in determining the risks of cardiovascular diseases. LDL-C is bad cholesterol being associated in deposition of cholesterol on the walls of arteries and HDL-C is good cholesterol being associated in carrying cholesterol out of the blood system and is more compact than LDL-C [40].

Conclusion:
1- Acute myocardial infarction associated with elevation of acute phase proteins as indicated by elevated highsensitivityc-reactive protein and fibrinogen.
2-In acute myocardial infarction elevation of hsCRP is positively correlated with elevation of fibrinogen concentrations, this combination can be used for prediction of future complications and how to prevent them.
3-Both hsCRP and Fibrinogen can be used as new parameters in studying early events of atherosclerosis in families with history of CHD and taking early preventive measures.
4-Quantitative determination of cardiac Troponin I concentration in sera of acute myocardial infarction patients is important for stratification of treatment and future preventive methods.
5-High total cholesterol, triglycerides, VLDL-cholesterol, LDL-cholesterol and low HDL-cholesterol concentrations are important risk factors in the development of coronary artery disease so complete lipid profile is always advisable.

References

1- Mallinson.T:Myocardial Infarction, Focus on First Aids(2010); (15):15
34- Laurence P. Control of Fibrinogen Biosynthesis, Cardiovascular Eng (2010) 10: 78–83
38- Blumenschein TM, Tripet BP, Hodges RS and Sykes BD Mapping the interacting regions between troponin T and C. Binding of TnT and TnI peptides to TnC and NMR mapping of the TnT-binding site on TnC. J Biol Chem (2001); 276: 36606–36612.