ON WEAKLY λ-CONTINUOUS FUNCTIONS IN BITOPOLOGICAL SPACES

Azal Jaafer Moosa Meera
Babylon University
College of Education
Mathematics department

Nada Mohammed Abbas
Babylon University
College of Education
Mathematics department

Samah Abd Al- hadi
Babylon University
College of science for girls computer department

Abstract
As a generalization of λ-continuous functions, we introduce and study several properties of weakly λ-continuous functions in Bitopological spaces and we obtain its several characterizations.

Keywords and phrases. Bitopological spaces, λ-open sets, weakly λ-continuous function.

1. Introduction
The notion of λ-open sets due to al-talkany[1], semi-preopen sets due to Andrijević [2] plays a significant role in general topology. In [3] the concept of λ-continuous functions is introduced and further Popa and Noiri[5] studied the concept of weakly λ-continuous functions. In this paper, we introduce and study the notion of weakly λ-continuous functions in bitopological spaces further and investigate the properties of these functions.

Throughout the present paper, (X,T,T^{a}) denotes a bitopological space. Let (X,τ) be a topological space and A be a subset of X. The closure and interior of A are denoted by $Cl(A)$ and $Int(A)$ respectively.

Let (X,T,T^{a}) be a bitopological space and let A be a subset of X. The closure and interior of A with respect to T or T^{a} are denoted by $Cl_{T}(A)$, $int_{T}(A)$ or $Cl_{T}^{a}(A)$ and $Int_{T}^{a}(A)$ respectively.

2. basic definition

In this section we give all basic definition and some theorems and lemma we needs in this paper.

Definition 2.1 [1]. A subset A of a bitopological space (X,T,T^{a}) is said to be
(i)regular open if $A=Int_{T}^{a}(Cl_{T}(A))$.
(ii)regular closed if $A=Cl_{T}(Int_{T}^{a}(A))$.
(iii)preopen if $A\subseteq Int_{T}^{a}(Cl_{T}(A))$.

Remark 2.1:
1. λ-interior mean that the interior w.r.t. λ-open set.
2. λ-cl mean clouser w.r.t. λ-open set.

Definition 2.2. [1] A subset A of a bitopological space (X,T,T^{a}) is said to be λ-open if there exist T^{a}-open set U such that $A\subseteq U$, $A\subseteq Cl_{T}(U)$.

Lemma 2.1. [1] Let (X,τ_{1},τ_{2}) be a bitopological space and A be a subset of X. Then
(i) A is λ-open if and only if $A=\lambda Int(A)$.
(ii) A is λ-closed if and only if $A=\lambda Cl(A)$.
Lemma 2.2. For any subset A of a bitopological space \((X,T,T^a)\), \(x \in \lambda Cl(A)\) if and only if
\(U \cap A \neq \emptyset\) for every \(\lambda\)-open set \(U\) containing \(x\).

Definition 2.3. [4] A function \(f:(X,T,T^a) \rightarrow (Y,K,K^a)\) is said to be \(\lambda\)-continuous if \(f^{-1}(V)\) is
\(\lambda\)-open in \(X\) for each \(K\)-open set \(V\) of \(Y\).

3. Weakly \(\lambda\)-continuous

In this section we define weakly \(\lambda\)-continuous with some theorems

Definition 3.1. (i). A function \(f:(X,T,T^a) \rightarrow (Y,K,K^a)\) is said to be weakly precontinuous if for each \(x \in X\) and each \(K\)-open set \(V\) of \(Y\) containing \(f(x)\), there exists a \(\lambda\)-open set \(U\) containing \(x\) such that \(f(U) \subseteq Cl^a(V)\).

(ii). A function \(f:(X,T,T^a) \rightarrow (Y,K,K^a)\) is said to be weakly \(\lambda\)-continuous if for each \(x \in X\) and each \(K\)-open set \(V\) of \(Y\) containing \(f(x)\), there exists a \(\lambda\)-open set \(U\) containing \(x\) such that \(f(U) \subseteq Cl^a(V)\).

Example 3.1. Let \(X=\{a,b,c,d\}, T=\{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}\), \(T=T^a\)
\(\lambda\)-open \((X) = \emptyset\)
\(Y=\{1,2,3\}, K=\{Y, \phi, \{1\}\}, K^a=\{X, \phi, \{1\}, \{1,2\}, \{1,3\}\}\)
let \(f:(X,T,T^a) \rightarrow (Y,K,K^a)\) defined by \(f(a)=1, f(b)=f(c)=2\) then \(f\) is weakly \(\lambda\)-continuous.

Remark 3.1. The composition of two weakly \(\lambda\)-continuous is not necessary weakly \(\lambda\)-continuous.

Theorem 3.2. For a function \(f:(X,T,T^a) \rightarrow (Y,K,K^a)\), the following properties are equivalent:

(i). \(f\) is weakly \(\lambda\)-continuous.
(ii). \(\lambda Cl(f^{-1}(Int^a(Cl^a(B)))) \subseteq f^{-1}(Cl^a(B))\) for every subset \(B\) of \(Y\).
(iii). \(\lambda Cl(f^{-1}(Int^a(F))) \subseteq f^{-1}(F)\) for every regular closed set \(F\) of \(Y\).
(iv). \(\lambda Cl(f^{-1}(Cl(V))) \subseteq f^{-1}(Cl^a(V))\) for every \(K\)-open set \(V\) of \(Y\).
(v). \(f^{-1}(V) \subseteq \lambda Int(f^{-1}(Cl^a(V)))\) for every \(K\)-open set \(V\) of \(Y\).

Proof. (i) \(\rightarrow\) (ii). Let \(B\) be any subset of \(Y\). Assume that \(x \in X\) \(\sim f^{-1}(Cl^a(B))\). Then \(f(x) \in Y \sim Cl^a(B)\) and so there exists a \(K\)-open set \(V\) of \(Y\) containing \(f(x)\) such that \(V \cap B = \emptyset\), so \(V \cap \lambda Int^a(Cl^a(B)) = \emptyset\) and hence \(\lambda Cl^a(V) \cap \lambda Int^a(Cl^a(B)) = \emptyset\). Therefore, there exists a \(\lambda\)-open set \(U\) containing \(x\) such that \(f(U) \subseteq Cl^a(V)\).

Hence we have \(U \cap f^{-1}(Int^a(Cl^a(B))) = \emptyset\) and \(x \in X \sim \lambda Cl(f^{-1}(((Int^a(Cl^a(B))))))\) by Lemma 2.3. Thus we obtain \(\lambda Cl(f^{-1}(((Int^a(Cl^a(B)))))) \subseteq f^{-1}(Cl^a(B))\).

(ii) \(\rightarrow\) (iii). Let \(F\) be any regular closed set of \(Y\). Then \(F = Cl^a(Int^a(F))\) and we have \(\lambda Cl(f^{-1}((Int^a(Cl^a(Int^a(F))))) \subseteq f^{-1}(Cl^a(Int^a(F)))\).

(iii) \(\rightarrow\) (iv). For any \(K\)-open set \(V\) of \(X\). \(Cl^a(V)\) is regular closed. Then \(\lambda Cl(f^{-1}(V)) \subseteq \lambda Cl(f^{-1}(Int^a(Cl^a(V)))) \subseteq f^{-1}(Cl^a(V))\).

(iv) \(\rightarrow\) (v) Let \(V\) be any \(K\)-open set of \(Y\). The \(Y/Cl^a(V)\) is \(K\)-open set in \(Y\) and we have \(\lambda Cl(f^{-1}(Y/Cl^a(V))) \subseteq f^{-1}(Cl^a(Y/Cl^a(V)))\) and hence \(X/\lambda Int(f^{-1}(Cl^a(V))) \subseteq X/\lambda Int(f^{-1}(Cl^a(V)))\).

4. Weakly*-quasi continuous

Now we define the regular in the topological space \((X,T,T^a)\) with some theorems

Definition 4.1. A bitopological space \((X,T,T^a)\) is said to be regular if for each \(x \in X\) and each \(T\)-open set \(U\) containing \(x\), there exists a \(T\)-open set \(V\) such that \(x \in V \subseteq Cl^a(V)\) \(\subseteq U\).

Definition 4.2. A function \(f:(X,T,T^a) \rightarrow (Y,K,K^a)\) is said to be weakly*-quasi continuous (briefly \(w^*\)-continuous) if for every \(K\)-open set \(V\) of \(Y\), \(f^{-1}(Cl^a(V) \sim V)\) is biclosed in \(X\).
Theorem 4.3. If a function \(f:(X,T,T^a) \rightarrow (Y,K,K^a) \) is weakly-\(\lambda \)-continuous and w*-q.c, then \(f \) is \(\lambda \)-continuous.

Proof. Let \(x \in X \) and \(V \) be any \(K \)-open set of \(Y \) containing \(f(x) \). Since \(f \) is weakly-\(\lambda \)-continuous, there exists an \(\lambda \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq Cl_{T^a}(V) \). Hence \(x \in f^{-1}(Cl_{T^a}(V)) \). Therefore, \(x \in U \cap f^{-1}(Cl_{T^a}(V)) \). Since \(U \) is \(\lambda \)-open and \(X \) is \(\lambda \)-open, then \(U \cap f^{-1}(Cl_{T^a}(V)) \) is \(\lambda \)-open. Then \(x \in f^{-1}(Cl_{T^a}(V)) \) and hence \(f(y) \in V \). Therefore, \(f \) is \(\lambda \)-continuous.

5. Almost \(\lambda \)-continuous

In this section we define almost \(\lambda \)-continuous with some theorems

Definition 5.1. A function \(f: (X,T,T^a) \rightarrow (Y,K,K^a) \) is said to have a \(\lambda \) interiority condition if \(\lambda \text{ Int}(f^{-1}(Cl_{T^a}(V))) \subseteq f^{-1}(V) \) for every \(K \)-open set \(V \) of \(Y \).

Definition 5.2. A function \(f: (X,T,T^a) \rightarrow (Y,K,K^a) \) is said to be almost \(\lambda \)-continuous if for each \(x \in X \) and each \(K \)-open set \(V \) containing \(f(x) \), there exists an \(\lambda \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq Cl_{T^a}(V) \).

Lemma 5.1. A function \(f: (X,T,T^a) \rightarrow (Y,K,K^a) \) is almost \(\lambda \)-continuous if and only if \(f^{-1}(V) \) is \(\lambda \)-open for each regular open set \(V \) of \(Y \).

Definition 5.3. A bitopological space \((X,T,T^a) \) is said to be almost regular if for each \(x \in X \) and each regular open set \(U \) containing \(x \), there exists a regular open set \(V \) of \(X \) such that \(x \in V \subseteq Cl_{T^a}(V) \subseteq U \).

Theorem 5.4. Let a bitopological space \((Y,K,K^a) \) be almost regular. Then a function \(f: (X,T,T^a) \rightarrow (Y,K,K^a) \) is almost \(\lambda \)-continuous if and only if it is weakly-\(\lambda \)-continuous.

Proof. Necessity this is obvious

Sufficiency. Suppose that \(f \) is weakly-\(\lambda \)-continuous. Let \(V \) be any regular open set of \(Y \) and \(x \in f^{-1}(V) \). Then we have \(f(x) \in V \). By the almost-regularity of \(Y \), there exists a regular open set \(V_0 \) of \(Y \) such that \(f(x) \in V_0 \subseteq Cl_{T^a}(V_0) \subseteq V \). Since \(f \) is weakly-\(\lambda \)-continuous, there exists an \(\lambda \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq Cl_{T^a}(V_0) \subseteq V \). This implies that \(x \in U \subseteq f^{-1}(V) \). Therefore we have \(f^{-1}(V) \subseteq \lambda \text{ Int}(f^{-1}(V)) \) and hence \(f^{-1}(V) = \lambda \text{ Int}(f^{-1}(V)) \). By Lemma 2.2, \(f^{-1}(V) \) is \(\lambda \)-open and by Lemma 5.1, \(f \) is almost \(\lambda \)-continuous.

References

1- Altalkany .Y.K., "study special case of bitopological spaces", 2005
3- Sajda kadham and hassna hassan ,,on \(\lambda \)-continuous function ,,Babylon university , vol.13, No.3,2009.