Thermal and Structure properties in Ferromagnetic INVAR Alloys
Prepared by Powder Metallurgy Processes

Ishmael K. Jassim Fadhil A. Chyad
University of Baghdad, College of Science, Physics Department

Abstract

In order to understand the INVAR effect in 3D-transition metal alloys, the Fe_{1-x}Ni_x alloys with x= 0.35, 0.50, 0.70 have been chosen.

Experiments have been made on thermal and structural properties to study the physical origin of INVAR characteristics such as: thermal expansion, phase transition, and Curie temperature Tc which are closely related to its ferromagnetism. Fe_{0.15}Ni_{0.85} shows an anomalously small thermal expansion coefficient below the Curie temperature with (FCC) structure. This behavior has not been found in other combinations.

The structural results show that the (BCC) phase occurs above 50% Ni and does not affect the INVAR behavior. The results are discussed with the relation between thermal and structural properties with respect to the magnetic transformation.

Introduction

Powder metallurgy is used in the production of soft magnetic materials for direct current applications and for permanent magnets. In many of these applications, parts are produced by powder metallurgy, because this method permits production to final shape with a minimum subsequent machining and grinding, while at the same time achieving desirable magnetic properties. Nickel is a non-carbide-forming element, which is soluble in iron at all proportions. Nickel helps to prevent excess grain growth at high temperatures and enables fine grain steels to be produced more easily. It tends to stabilize austenite and thus lowers the critical temperature. This makes the heat treatment a little less severe.

Nickel may be present in the steel up to 50 percent. In the range of 2 to 5 percent, nickel contributes great strength and hardness with high elastic limit, good ductility, and good resistance to corrosion and decrease machinability. In the range of 30 to 40 percent nickel lowers the coefficient of thermal expansion, and in the range of 50 percent and above, it increases magnetic permeability. Large amounts give resistance to oxidation at high temperature.

INVAR has practically zero thermal expansion coefficients, which is quite useful for engineering applications. The thermal expansion is a normally associated with the onset of ferromagnetism in certain, notably (Fe_{1-x}Ni_x) with x=0.35 is known as the INVAR effect.

Many experiment and theoretical studies of INVAR alloys have been taken in recent years using ultrasonic, neutron scattering, and other techniques to elucidate the microscopic origin of the effect, but as yet no clear understanding has been reached. Nevertheless, in all models of the INVAR effect it is recognized that the relationship between magnetic and atomic volume or interatomic distance plays a critical role.

The Fe-Ni system is also of fundamental importance from the structure point of view since Ni has a (FCC) structure and Fe is (BCC). As an example of ferromagnetism, the (Fe_{1-x}Ni_x) alloy system was chosen with (x=0.35, 0.50, 0.70)

Experimental techniques

Pure Fe and Ni powder supplied by (BDH Ltd.) was used to prepare the alloy as a cylindrical sample of 10mm diameter and 50mm height. These percentages of Ni are added to Fe and mixed well in a ball mill for 24 hours. The powder uniaxially pressed at 1000 kg/cm^2. Sintering was carried out at a temperature of 1350°C for 2 hrs or 10°C/min heating rate.

The metallic ratios of the alloys are determined by atomic absorption spectroscopy and energy dispersive spectrometer techniques.

The results of these measurements indicate no evidence of any impurities. The samples for X-ray, DTA were obtained by crushing the alloys in ball mills down to 300 mesh grains. The structure of the (Fe_{1-x}Ni_x) alloys (0.35, 0.50, 0.70) were initially investigated using X-ray diffraction at room temperature with a (Philips diffractometer type PW 1877). To obtain lattice parameter more accurately, the Nelson-Riley extrapolation is used.

The specific heat measurements at high temperatures obtained from the differential thermal analysis (DTA type Netzsch 409) where a 1100°C furnace was used with a heating rate of 10°C/min. The weights of precipitated samples were about 500mg. The specific heat determined from the peak area in DTA, which is depends on the mass (m) and the heat reaction or the enthalpy change (ΔH); then using the equation:

\[C_p = \frac{(\Delta H/dT)}{m} \]
Where, ΔT is the difference in temperature between a sample (S) and an inter reference (R).

A cylindrical specimens ~3 cm in length was used for thermal expansion measurements ranged from room temperature to 900 °C and this was connected to DTA equipment. The relative accuracy for thermal expansion was up to 4%.

Results and Discussion

The aim of this work is studying the new preparing method of ferromagnetic alloys for the binary system Fe-Ni with three ratios by using powder metallurgy method. Structural and Thermal properties have been measured for all samples. A alloys which exhibit INVAR behavior have a small Thermal expansion coefficient below the Curie temperature. For alloys in the (Fe$_{1-x}$Ni$_x$) system (x - 0.35, 0.50, 0.70) the composition (Fe$_{0.45}$Ni$_{0.55}$) shows more INVAR effect than other alloys as shown in fig. (1). Both alloys (Fe$_{0.45}$Ni$_{0.55}$) and (Fe$_{0.35}$Ni$_{0.65}$) have an (FCC, gamma phase) structure. But the system (Fe$_{0.35}$Ni$_{0.65}$) has (BCC, alpha phase) structure where no INVAR behavior in the thermal expansion coefficient versus temperature curves are shown in fig. (1). Table (1) shows the results relevant properties of the three samples.

The reason of low thermal expansion of the system (Fe$_{0.45}$Ni$_{0.55}$) below Te (326 K°) due to the interaction between the lattice vibration and magnetic degrees of freedom. However, the above Curie temperature the alloy expands normally. This results are identical with the spontaneous magnetization of this alloy which shows anomalies such as deviation of the magnetic moment curve below Curie temperature.

The specific heat results for (Fe$_{0.45}$Ni$_{0.55}$) alloys are shown in fig. (2) which reveal an anomalous temperature dependence. At (Fe$_{0.50}$Ni$_{0.50}$), C$_p$ curve is characterized by two distinct maxima: one about 910 K and the second reveals an anomalous maximum at about 540°K. The position of this anomalous maxima is only slightly concentrated where it is a strong decrease of the Curie temperature as well as of the magnetic heat of transformation occurs with decreasing nickel content so that the alloy with 0.35% Ni reveals only a single maximum composed of both Curie peak and the maximum caused by the anomalous excess heat.

Similar effects have been seen by W. Bendick (1978) in other INVAR alloys such as (Fe$_{0.50}$Ni$_{0.50}$Mn$_{0.50}$) or Fe$_{0.60}$Ni$_{0.40}$ system. The lattice parameter for Fe$_{0.45}$Ni$_{0.55}$ alloy calculated from the (211) and (111) lines position using Bragg’s Law for a cubic lattice with smallest error (< 0.1) due to incorrect values of 2θ angle diffraction. Fig (3) present the change of the lattice parameter (a) versus milling time for the ball milling process of Fe$_{0.45}$Ni$_{0.55}$. The value of the lattice parameter increased from a = 3.60 A° for 24 hr to a = 3.79 A° for 96 hr. Such change of (a) when milling time increase was because of the small difference between the atomic sizes of the Ni and Fe atoms. The structural results fit well and agree with the data reported in Refs [11,12]. To obtain a deeper understanding of the INVAR phenomena, it is helpful to see the influence of the milling time on the magnetic and thermal properties and collect microscopic information about the physical properties. More detailed discussion of these phenomena will be given in future work.

![Figure (1): The Relation between thermal expansion coefficient (α) and temperature (K°)](image-url)
الخلاصة

نعرض دراسة ظاهرة الانفطار في سائل المانمار الإلثانية تم اختيار سلسلة النظام الثنائي Fe-Ni لثلاثة نسب مختلفة. اجريت التحويلات الحرارية والتركيبة لتمائج المحمولة ومن خلالها تم تحديد خاصة الانفطار، الأطوار الإلثانية يتم درجات حرارة كوريا. أُثبتت النتائج التجريبية يوجد شذوذ في معلم التصعد الحراري لسيمكة ν_{33} حيث تم الحصول على قيمة سالبة تحت درجة حرارة كوريا (T_c) في حين احتفظ هذه الظاهرة عند النماذج الأخرى. أما النتائج التجريبية فقد تظهرت بوجود بنية تركيبة مكوية متمركزة الأوجه (FCC) حسبما تكون نسبة النيكل ($50-55\%$) سرعان ما ت姒ب إلى بنية تركيبة مكوية متمركزة الخمسي (BCC) حسبما تكون نسبة النيكل (70%).

References
