About The Two-Parameter Strum-Liouville Eigenvalue Problem

Ahlan J. Khateel, Farah Jawad

Abstract

In this work, we study the double eigenvalue problem related to the ordinary differential equation especially for the Strum-Liouville problem which is given by

\[
\frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) + \left(\lambda(x) - \mu(x) \right) y(x) = 0, \quad a \leq x \leq b
\]

with the boundary conditions \(y(a) = \alpha, y(b) = \beta \).

And two methods are presented here to solve this type of the eigenvalue problems, one of them is a numerical method namely the finite difference method and the other is an approximation method, namely the variational method. These methods are illustrated with some examples.

Introduction

The generalized eigenvalue problem for the one-parameter eigenvalue problem is the problem of finding the eigenpair \((\lambda, X)\) which satisfies the equation:

\[
AX - \lambda BX = 0
\]

where \(A, B \in \mathbb{H}\) are known linear operators defined on a Hilbert space \(\mathbb{H}\). If \(A\) and \(B\) are matrices then this problem is said to be the algebraic linear eigenvalue problem. If \(A_0\) and \(B_0\) are differential operators, then the problem is called the continuous linear eigenvalue problem.

On the other hand, the problem of finding the double eigenvalue problem (or the two-parameter eigenvalue problem) of the problem of finding the double eigenvalue \((\lambda, \mu)\) corresponding with the eigenfunction \(X\) which satisfies the equation:

\[
AX - \lambda BX - \mu CX = 0
\]

with the boundary conditions \(y(a) = \alpha, y(b) = \beta\).

The finite difference method can be used to convert this continuum eigenvalue problem to an equivalent algebraic eigenvalue problem which can be solved easily. For more details, see [6].

In this work, we use the same method to convert the continuum double Strum-Liouville eigenvalue problem to an equivalent algebraic double eigenvalue problem which can be solved easily.

The Two-Parameter Strum-Liouville Eigenvalue Problem:

The two-parameter eigenvalue problem consisting of the differential equation:

\[
\frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) + \left(\lambda(x) - \mu(x) \right) y(x) = 0, \quad a \leq x \leq b
\]

with the boundary conditions

\[
y(a) = \alpha, \\
y(b) = \beta
\]

where \(p, \xi, \gamma, \nu\) and \(s\) are continuous functions of \(x\), \(c\) is any given point lies in the interval \((a,b)\) and \(p, \xi, \gamma, \nu\) are positive functions in the closed interval \([a,b])\).

The problem here is to determine the double eigenvalue problem \((\lambda, \mu)\) to which the corresponding nontrivial solution \(y(x)\) exists.

Finite Difference Approach:

The finite difference method [5] is one of the most important techniques which is used to convert any continuum eigenvalue problem into an equivalent algebraic one.

This technique is devoted here to solve the two-parameter Strum-Liouville eigenvalue problem given by eq.(1)-(4) and is described by the following steps:
Step (1): Divide the interval \([a,b]\) into \(n\) subintervals such that the point \(c_i\) is one of its mesh points. These points are denoted by \(x_i, i=0,1,...,n\) and are given by
\[
x_i = a + ih_i, \quad \text{where} \quad h = \frac{b-a}{n}.
\]

Step (2): Replace the above differential equation (3) into an equivalent difference equation which is given by

\[
p_i(x_i-x_0+y_1-y_0) + \frac{h^2}{2}(p_i(x_i-x_0+y_1-y_0) + q(x_i-y_0) = 0 \quad (5)
\]

where
\[
p(x_i) = p_i, \quad p'(x_i) = p_i', \quad r(x_i) = r_i, \quad q(x_i) = q_i, \quad s(x_i) = s_i,
\]

and
\[y(x_i) = y_i, i=1,2,...,n-1.\]

Step (3): Evaluate eq.(5) at \(i=1,2,...,n-1\) and rewrite these equations in the matrix form given by eq.(2)
which can be solved easily by using MathCad professional software to give the values of the double eigenvalue \((\lambda, \mu)\) with the corresponding eigenvector \(\{y_i\}, i=1,...,n-2\).

Example (1)

Consider
\[
y'' + (\lambda + \mu x)y = 3x^2 + 8x + 4, 0 \leq x \leq 2 \quad (6)
\]

with the boundary conditions
\[
y(0)=2, \quad y(1)=3, \quad y(2)=4.
\]

Divide the interval \([0,2]\) into \(6\) subintervals to give the mesh points \(x_i\) where
\[h = \frac{2}{6} = \frac{1}{3} \quad \text{and} \quad i=0,1,...,6.
\]

Note that \(x_0 = 0, \quad x_1 = 1\) and \(x_6 = 2\) are the mesh points in which the solution at them are given. So the problem here is to determine the double eigenvalue \((\lambda, \mu)\) with the corresponding eigenvector \(\{y_i\}, i=1,2,4,5\).

After replacing eq.(5) into an equivalent difference equation and evaluating the resulting equation at \(x=1,2,3,4,5\) one can get the following equations with their solutions (written in the MathCad Software Editor):

\[
\lambda = 2, \quad \mu = 3, \quad y_1 = \frac{1}{2}, \quad y_2 = \frac{8}{3}, \quad y_4 = \frac{10}{3}, \quad y_5 = \frac{1}{3}.
\]

Given
\[
y_2 + \frac{2}{9}y_1 + \frac{1}{27}y_3 + \frac{1}{27}y_2 - y_1 = \frac{1}{5}(-3 - \frac{1}{3} + \frac{2}{9} + \frac{1}{27}) - 2
\]

\[
y_3 + \frac{2}{9}y_2 + \frac{1}{27}y_4 - y_2 = \frac{1}{5}(-3 + \frac{1}{9} + \frac{2}{9} + \frac{2}{27} + \frac{3}{9} + \frac{2}{27} + \frac{1}{27}) - 3
\]

\[
y_4 + \frac{2}{9}y_3 + \frac{1}{27}y_5 + \frac{1}{27}y_2 + y_3 - \frac{1}{5}(-3 + \frac{1}{9} + \frac{2}{9} + \frac{2}{27} + \frac{3}{9} + \frac{2}{27} + \frac{1}{27}) - 3
\]

\[
y_5 + \frac{2}{9}y_4 + \frac{1}{27}y_6 + y_4 - y_5 = \frac{1}{5}(-3 + \frac{1}{9} + \frac{2}{9} + \frac{2}{27} + \frac{3}{9} + \frac{2}{27} + \frac{1}{27}) - 3
\]

Find \((\lambda, \mu, y_1, y_2, y_4, y_5) = (2.061, 2.049, 2.35, 2.083, 2.314, 3.643)\).

Variational Approach

Variational Technique For Solving Any Linear Problem

Consider the linear problem
\[
Ly = f
\]
where \(L: L^2[0,1] \rightarrow L^2[0,1]\) is a bounded linear operator defined on a Hilbert space \(L^2[0,1]\) and
\(f \in L^2[0,1]\).

The problem here is to determine the unknown function \(y(x)\) in case \(f(x)\) is a given function of \(x\).

The problem of finding a solution of eq.(7) is equivalent to finding the critical points of the functional
\[
E[y] = \frac{1}{2} \left< Ly, Ly \right> - \left< f, Ly \right>
\]

Where
\[
\left< Ly, Ly \right> = \int_{0}^{1} (Ly)^2 dx \quad \text{and} \quad \left< Ly, f \right> = \int_{0}^{1} (Ly)f(x) dx.
\]

For more details, see [3].

The Variational Formulation of eq.(3)-(4)

First, rewrite eq.(1) as \(Ly = f\), where
\[
L = -\frac{d}{dx} \left(p(x) \frac{dy}{dx} + (q(x, \lambda, \mu) + r(x)) y \right)
\]
Then the solution of eq. (3)-(4) can be found by minimizing its variational formulation which is given by

\[
\frac{d}{dx} \left[\int_0^1 y(x) \frac{d}{dx} \phi_1(x) \, dx \right] + \lambda(x) y(x) \phi_1(x) \, dx = 0
\]

where \(\lambda(x) \) is any function which satisfies the homogeneous boundary conditions and \(V(x) \) is any function which satisfies the boundary conditions given by eq. (1).

The Solution For The Variational Formulation of eq. (3)-(4)

To solve the above variational problem, assume the solution of eq. (3)-(4) takes the form

\[y(x) = \phi_1(x) - \phi_2(x) - V(x) \]

where \(\phi_1(x) \) is any function which satisfies the homogeneous boundary conditions and \(V(x) \) is any function which satisfies the boundary conditions given by eq. (1).

Approximate the unknown function \(y(x) \) as a linear combination of the elements of a basis for \(L^2([a,b], \mu) \), say \(\phi_i(x) \), \(i = 1, 2, \ldots, n \), for which

\[\phi_i(a) = \phi_i(b) = \phi_i'(b) = \phi_i'(c) = \phi_i'(c) \]

Then the solution of eq. (3)-(4) takes the form

\[y(x) = \sum_{i=1}^n a_i \phi_i(x) + V(x) \]

where \(\{a_i\}, \quad i = 1, 2, \ldots, n \) are the unknown parameters to be determined.

By substituting this solution into the functional given by eq. (8), one can get

\[
H[\bar{a}] = \int_0^1 \left[\frac{d}{dx} \left(\sum_{i=1}^n a_i \phi_i(x) + V(x) \right) \right]^2 \, dx
\]

Then the values of \(\bar{a} \) can be found by minimizing the functional \(H[\bar{a}] \) with respect to \(\bar{a} \) (to do so, any suitable method in unconstrained optimization can be used or one can use the MathCad professional software) and hence the solution of eq. (3)-(4) is obtained.

Example (2)

Consider

\[y''(x) - (\mu^2 x^2 + \nu) y(x) = x^2 + x \]

with the boundary conditions

\begin{align*}
&y(0) = 0 \\
y'(1) = 1 \\
y''(2) = \frac{1}{2}
\end{align*}

Rewrite the above differential equation as

\[y''(x) - (\mu^2 x^2 + \nu) y(x) = \phi(x) \]

where \(\phi(x) = 0 \) and \(\phi'(x) = x^2 + x \)

Approximate the solution of this example as a polynomial of degree three, i.e.,

\[y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \]

then this solution must satisfy the above boundary conditions and after simple computations this solution reduces to

\[y(x) = \left(\frac{1}{4} + \frac{3}{2} a_3 \right) x - \left(\frac{11}{6} - a_3 \right) x^2 + a_3 x^3 \]

where \(a_3 \) is the unknown parameter that must be determined.

By substituting this solution into the functional defined in eq. (8) and solving the resulting minimization problem one can get the value of \(a_3 \), and hence the solution of the above example is obtained. To do so, see the following MathCad professional software.

The exact solution of the differential equation

\[y''(x) + (\mu^2 x^2 + \nu) y(x) = x^2 + x \]

with the boundary conditions

\begin{align*}
&y(0) = 0 \\
y'(0) = 1 \\
y(1) = 1
\end{align*}

is \(y(x) = x^2 + x \) with the exact eigenvalue \((\lambda, \alpha) = (0, 1) \). On the other hand the approximated solution using the variational technique is \(y(x) = 0.99999 x \) with the approximated double eigenvalue \((\lambda, \alpha) = (1.194 \times 10^{-5}, 1) \).
References

الخلاصة

الهدف الرئيسي من هذا البحث هو دراسة سلسلة الكم القياسي المزودة لنموذج سلسلة لولي. في هذا التحقيق، نحن نعرض طريقتين لحل هذا النموذج من النمط القياسي المستخدمة بطرقية عددية وهي مزيج الفروقات المشتركة والقائمة على تقريب. وفي النهاية، نستعرض بعض الأمثلة لتطبيق هذه الطرق.