Certain Forms of β^{**}-Continuous Functions

Abstract:
In this work, we obtain new weak and strong forms of β^{**}-continuous functions Using the concept of $g\beta$-closed set.
We also obtain a characterization of β^-T_1 spaces.

المستخلص:
في هذا البحث قمنا أنماث ضعيفة وقوية من الدوال المستمرة β^{**} باستخدام مفهوم المجموعات المغلقة $g\beta$ أيضا حصلنا تمييز للفضاءات β^-T_1.

1- Introduction:
In this paper, we introduce Weak form of β^{**}-continuous functions called M-β^{**}-continuous functions by using $g\beta$-closed sets obtain some basic properties of such functions also we introduce and study contra- β^{**}-continuous functions.
This notion is a stronger form of M-β^{**}-continuous functions.
Finally we introduce and study perfectly contra- β^{**}-continuous functions which is a strong form of β^{**}-continuous functions.
Throughout this paper (X, τ) and (Y, σ) (or X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated.

2- Basic definitions:
In this section we recall the basic definitions needed in this work.

2-1 Definition:[1]
Let (X, τ) be a topological space, let $A \subseteq X$ then we say that:
i- A is semi-open if $A \subseteq \text{cl} \text{ Int } A$. The complement of semi-open set is called semi-closed.
ii- A is α-open if $A \subseteq \text{Int} \text{ cl } \text{ Int } A$ The complement of α-open set is called α-closed.
iii- A is β-open if $A \subseteq \text{cl} \text{ Int } \text{ cl } A$ The complement of β-open set is called β-closed.
2-2 Definition:[2]

i- the intersection of all semi-closed sets containing A is called the semi-closure of A and is denoted by $\text{Scl}A$

ii- the intersection of all α-closed sets containing A is called the α-closure of A and is denoted by $\alpha\text{ cl}A$.

iii- the intersection of all β-closed sets containing A is called the β-closure of A and denoted by $\beta\text{ cl}A$.

2-3 Definition:[1]

i- the family of all semi-open sets in X is denoted by $\text{SO}(X)$.

ii- the family of all α-open sets in X is denoted by $\alpha\text{ O}(X)$.

iii- the family of all β-open sets in X is denoted by $\beta\text{ O}(X)$.

2-4 Definition:[2]

A subset F of (X, τ) is said to be:

i- g- closed in (X, τ) if $F \subseteq O$ and O is open $\Rightarrow \text{cl}(F) \subseteq O$.

ii- $g\alpha$- closed in (X, τ) if $F \subseteq O$ and O is α- open $\Rightarrow \alpha\text{ cl}(F) \subseteq O$.

iv- gs- closed in (X, τ) if $F \subseteq O$ and O is open $\Rightarrow \text{scl}(F) \subseteq O$.

v- sg-closed in (X, τ), if $F \subseteq O$ and O is semi-open $\Rightarrow \text{scl}(F) \subseteq O$.

vi- $g\beta$-closed in (X, τ) if $F \subseteq O$ and O is β-open $\Rightarrow \beta\text{ cl}(F) \subseteq O$.

A subset W is said to be (g-open, $g\alpha$-open, gs-open, sg-open, $g\beta$-open) if its complement $W^c=X-W$ is (g-closed, $g\alpha$-closed, gs-closed, sg-closed, $g\beta$-closed).

2-5 Definition:[3]

A function $f:(X, \tau)\rightarrow (Y, \sigma)$ is called:

i- β^{**}-continuous[3] if for each $v \in \beta\text{ O}(Y, \sigma)$ (that is v is β-open in Y) we have $f^{-1}(v)\in \beta\text{ O}(X, \tau).$(I.e. $f^{-1}(v)$ is β-open in X).

ii- β^{**}- closed if for every β- closed set W of (X, τ), $f(W)$ is β- closed in (Y, σ).

iii- β^{**}-open if for every β-open set W of (X, τ), $f(W)$ is β-open in (Y, σ).

iii- contra- β- closed if $f(U)$ is β-open in Y for each closed set U of X.

3- Main Results:

Before, we state the main results of this paper, we introduce the following definitions.

3-1 Definition:

A function $f:(X, \tau)\rightarrow (Y, \sigma)$ is said to be M-β^{**}-continuous if $\beta\text{ cl}(F) \subseteq f^{-1}(O)$ whenever O is a β-open subset of (Y, σ), F is a $g\beta$-closed subset of (X, τ), and $F \subseteq f^{-1}(O)$. 168
3-2 Definition:
A function \(f: (X, \tau) \rightarrow (Y, \sigma) \) is said to be \(M-\beta \)-closed if \(f(W) \subseteq \beta \text{int} A \) whenever \(A \) is a \(g\beta \)-open subset of \((Y, \sigma)\). \(W \) is a \(\beta \)-closed subset of \((X, \tau)\), and \(f(W) \subseteq A \).

3-3 Theorem:
i- \(f: (X, \tau) \rightarrow (Y, \sigma) \) is \(M-\beta^{**} \)-continuous if \(f^{-1}(O) \) is \(\beta \)-closed in \((X, \tau)\) for every \(\beta \)-open \(O \) in \((Y, \sigma)\), (that is if \(f \) is contra-\(\beta^{**} \)-continuous) [3].
ii- \(f: (X, \tau) \rightarrow (Y, \sigma) \) is \(M-\beta \)-closed if \(f(W) \) is \(\beta \)-open in \((Y, \sigma)\) for every \(\beta \)-closed subset \(W \) of \((X, \tau)\) (that is if \(f \) is contra-\(\beta^{**} \)-closed).

Proof:
i- Let \(F \subseteq f^{-1}(O) \), where \(O \) is \(\beta \)-open in \((Y, \sigma)\) and \(F \) is a \(g\beta \)-closed subset of \((X, \tau)\). Therefore \(\beta \text{cl}(F) \subseteq \beta \text{cl}(f^{-1}(O)) = f^{-1}(O) \). Thus \(f \) is \(M-\beta^{**} \)-continuous.

ii- Let \(f(W) \subseteq A \), where \(W \) is a \(\beta \)-closed subset of \((X, \tau)\) and \(A \) is a \(g\beta \)-open subset of \((Y, \sigma)\), therefore \(\beta \text{int}(f(W)) \subseteq \beta \text{int}(A) \) then \(f(W) \subseteq \beta \text{int}(A) \) thus \(f \) is \(M-\beta \)-closed.

3-4 Remark:
i- Clearly \(\beta^{**} \)-continuous functions are \(M-\beta^{**} \)-continuous.

ii- \(\beta^{**} \)-closed functions are \(M-\beta \)-closed.

Proof:
i- Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be \(\beta^{**} \)-continuous, let \(O \) be \(\beta \)-open in \((Y, \sigma)\), hence \(f^{-1}(O) \) is also \(\beta \)-open. Now \(F \) is \(g\beta \)-closed so \(F \subseteq f^{-1}(O) \Rightarrow \beta \text{cl}(F) \subseteq f^{-1}(O) \).

ii- Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be \(\beta^{**} \)-closed, let \(W \) be \(\beta \)-closed in \((X, \tau)\), so \(f(W) \) is also \(\beta \)-closed. Now \(A \) is \(g\beta \)-open so \(f(W) \subseteq A \Rightarrow f(W) \subseteq \beta \text{int}(A) \) (take the dual of the definition of \(g\beta \)-closed).

3-5 Theorem:
Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a function from a space \((X, \tau)\) to space \((Y, \sigma)\):
i- let all subsets of \((X, \tau)\) be clopen, then \(f \) is \(M-\beta^{**} \)-continuous if and only if \(f \) is contra-\(\beta^{**} \)-continuous (that is \(f^{-1}(O) \) is \(\beta \)-closed in \((Y, \sigma)\)).

ii- Let all subsets of \((Y, \sigma)\) be clopen, then \(f \) is \(M-\beta \)-closed if and only if \(f \) is contra-\(\beta^{**} \)-closed (that is \(f(W) \) is \(\beta \)-open in \((Y, \sigma)\) for every \(\beta \)-closed subset \(W \) of \((X, \tau)\)).
Proof:
i- Assume that f is M-β^{**}-continuous. Let A be an arbitrary subset of (X, τ) such that $A \subseteq V$, where V is β-open in (X, τ) then by hypothesis $\beta \text{cl}(V) = V$ therefore all subsets of (X, τ) are g-β-closed (and hence all are g-β-open). So for any O which is β-open in (Y, σ), $f^{-1}(O)$ is g-β-closed in (X, τ). Since f is M-β^{**}-continuous, $\beta \text{cl}(f^{-1}(O)) \subseteq f^{-1}(O)$, therefore $\beta \text{cl}(f^{-1}(O)) = f^{-1}(O)$, i.e., $f^{-1}(O)$ is β-closed in (X, τ), so f is contra-β^{**}-continuous.

ii- Assume that f is M-β-closed as in (i), we obtain that all subsets of (Y, σ) are g-β-open. Therefore for any β-closed subset W of (X, τ), $f(W)$ is g-β-open in Y. since f is M-β-closed, $f(W) \subseteq \beta \text{int}(f(W))$. Hence $f(W) = \beta \text{int}(f(W))$, i.e., $f(W)$ is β-open.

3-6 Corollaries:
Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function from a topological space (X, τ) to a topological space (Y, σ):

i- Let all subsets of (X, τ) be clopen, then f is M-β^{**}-continuous if and only if f is β^{**}-continuous.

ii- Let all subsets of (Y, σ) be clopen, then f is M-β-closed if and only if f is β^{**}-closed.

3-7 Example:
If $f : X \rightarrow Y$ is β^{**}-continuous, then f need not be contra-β^{**}-continuous, for example:
The identity function on the topological space (X, τ) where $\tau = \{\phi, X, \{a\}, \{a, b\}\}$, $X = \{a, b, c\}$, is β^{**}-continuous but not contra-β^{**}-continuous.

3-8 Definition:
A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called perfectly contra-β^{**}-continuous if the inverse of every β-open set in Y is β-clopen in X.

3-9 Remark:
Every perfectly contra-β^{**}-continuous function is contra-β^{**}-continuous and β^{**}-continuous.

3-10 Theorem:
If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is β^{**}-continuous function and M-β-closed, then $f^{-1}(A)$ is a g-β-closed whenever A is a g-β-closed subset of (Y, σ).

170
Proof:
Let A be a $g\beta$-closed subset of (Y, σ) suppose that $f^{-1}(A) \subseteq O$ where O is β-open in (X, τ), now $O^c \subseteq f^{-1}(A^c)$, so $f(O^c) \subseteq f^{-1}(A^c)$, but f is $M\beta$-closed then $f(O^c) \subseteq \beta\text{int}(A^c) = (\beta\text{cl}(A))^c$. It follows that:

$O^c \subseteq f^{-1}(\beta\text{cl}(A))^c$ and hence: $f^{-1}(\beta\text{cl}(A)) \subseteq O$.

Since f is β^{**}-continuous, $f^{-1}(\beta\text{cl}(A))$ is β-closed thus we have:

$\beta\text{cl}(f^{-1}(A)) \subseteq \beta\text{cl}(f^{-1}(\beta\text{cl}(A))) = f^{-1}(\beta\text{cl}(A)) \subseteq O$. This implies that $f^{-1}(A)$ is $g\beta$-closed in (X, τ).

3-11 Remark:
Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \gamma)$ be two functions such that $g \circ f: (X, \tau) \rightarrow (Z, \gamma)$ then:

i- $g \circ f$ is contra-β^{**}-continuous if g is β^{**}-continuous and f is contra-β^{**}-continuous.

ii- $g \circ f$ is contra-β^{**}-continuous if g is contra-β^{**}-continuous and f is β^{**}-continuous.

3-12 Theorem:
If $f: (X, \tau) \rightarrow (Y, \sigma)$ is $M\beta^{**}$-continuous and is an open, $g\beta$-closed subset of (X, τ), then the restriction $f_A = f|_{A}: (A, \tau_A) \rightarrow (Y, \sigma)$ is $M\beta^{**}$-continuous.

Proof:
Assume F is a $g\beta$-closed subset relative to A and G is a β-open subset of (Y, σ) for which $F \subseteq (f_A)^{-1}(G)$ then $F \subseteq f^{-1}(G) \cap A$.

On the other hand, F is $g\beta$-closed in X, since f is $M\beta^{**}$-continuous, then $\beta\text{cl}(F) \subseteq f^{-1}(G)$ this implies that $\beta\text{cl}(F) \cap A \subseteq f^{-1}(G) \cap A$, using that fact that $\beta\text{cl}(F) \cap A = \beta\text{cl}_{A}(F)$ [3].

We have: $\beta\text{cl}_{A}(F) \subseteq (f_A)^{-1}(G)$

Thus $f_A: (A, \tau_A) \rightarrow (Y, \sigma)$ is $M\beta^{**}$-continuous.

4- A Characterization of $\beta-T_{1/2}$ Spaces

In this section, we give a characterization of the class of $\beta-T_{1/2}$ spaces.
4-1 Definition:[4]
A space (X, τ) is said to be $\beta-T_\frac{1}{2}$ space, if every $g\beta$-closed set is β-closed.

4-2 Theorem:
Let (X, τ) be a space, then (X, τ) is a $\beta-T_\frac{1}{2}$ space if and only if $f : (X, \tau) \to (Y, \sigma)$ is $M-\beta^{**}$-continuous, for every space (Y, σ) (and every function $f : (X, \tau) \to (Y, \sigma)$).

Proof:

\Rightarrow)
Let F be a $g\beta$-closed subset of (X, τ) and $F \subseteq f^{-1}(O)$ where O is β-open in (Y, σ) since (X, τ) is a $\beta-T_\frac{1}{2}$ space F is β-closed (i.e. $F=\beta\text{cl}(F)$)
Therefore $\beta\text{cl}(F) \subseteq f^{-1}(O)$ and hence f is $M-\beta^{**}$-continuous.

\Leftarrow)
Let W be a $g\beta$-closed subset of (X, τ) and Y be the set X with the topology $\sigma=\{\phi, Y, W\}$
Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function by assumption f is $M-\beta^{**}$-continuous since W is $g\beta$-closed in (X, τ) and β-open in (Y, σ) and $W \subseteq f^{-1}(W)$, it follows that $\beta\text{cl}(W) \subseteq f^{-1}(W) = W$. Hence W is β-closed in (X, τ), therefore (X, τ) is a $\beta-T_\frac{1}{2}$ space. \Box

References

(3) Mustafa Hadi J., Central- β-Continuous Functions First Kufa conference (2008), Kufa Univ.