Immunological response of gingival tissue injected by green tea

Dilyar A. Baban, B.D.S. (1)
Lekaa Mahmood, B.D.S., M.Sc. (2)
Nabil Eelia, B.Sc., M.Sc., Ph.D. (3)

ABSTRACT

Background: Green tea has many beneficial effects on the body. The recent era is all about herbal treatment of various diseases and green tea is one of the best tonics for healthy well beings. This study examined the immunological response of sulcular injection of green tea on gingival health using a rabbit model.

Methods: Twenty male rabbit weighted 1-1.5 kg of the same species. Blood samples were taken for each normal rabbits before sulcular injection with 5% green tea solution, blood drawn after three days of the injection for immunological assessment by measuring of IL-1β, TNF-α and INF-γ.

Results: Study showed there was a highly significant decrease in mean concentration of IL-1β, TNF-α after injection with 5% green tea solution (P< 0.01), while a significant elevation was observed in mean concentration of INF-γ after injected with the same solution (P<0.05).

Conclusion: Green tea sulcular injection had beneficial effect on the periodontal health condition, thus green tea can be used safely and successfully in oral field.

Key words: Green tea, sulcular injection, gingival health.

INTRODUCTION

Tea is consumed worldwide, although in greatly different amounts; it is generally accepted that, next to water, tea is the most consumed beverage in the world (1). Green tea polyphenols are responsible for its antioxidant activity either directly by scavenging of reactive oxygen and nitrogen species and chelating redox-active transition of metal ions like iron and copper or indirectly by inhibition of pro oxidant enzymes, redox sensitive transcription factors, and induction of antioxidant enzymes (2). Green tea catechins were reported to be effective in preventing gingival and periodontal inflammation. Epigallocatechin-3-gallate (EGCG) inhibits the m-RNA expression of COX-2, MMP-1 (matrix metalloproteinase-1), IL-1, 6 and 8 by cultured cells. Effective concentration to achieve these effects was ≥1 μg/ml. EGCG inhibit the activation of NF-kB (Nuclear Factor–kappa B), which is one of the key positive regulators of COX-2 expression (3). EGCG inhibits IL-1β induced cartilage proteoglycan degradation and expression of MMP-1 and MMP-13 (matrix metalloproteinase-13) (in human chondrocytes at micromolar concentration. Complete inhibition of MMP-1 and MMP-13 at a concentration of 100 μg EGCG was observed. This concentration can be achieved only by local administration and not by oral consumption. MMP-13 is more sensitive to the inhibitory effect even at lower conc.

This inhibitory effect is by inhibition of IL-1β induced expression of m-RNAs signifying that the effect is at transcriptional level (4), so EGCG may inhibit the activities of MMPs involved in the degradation of native collagen and this may have suppressive effects on the cartilage degradation in arthritic joints. Green tea polyphenol (GTP) supplementation mitigated deterioration of bone micro-architecture and improved bone integrity in rats with chronic inflammation by suppressing bone erosion and modulating cancellous and end cortical bone compartments, resulting in a larger net bone volume. Such a protective role of GTP may be due to a suppression of TNF-alpha (5). The aim of this study was to evaluate of certain immunological response through estimation of parameters like IL-1β, INF and TNF-α after intrsulcular injection of green tea into the periodontium. In this study, we examined the immunological response of intrasulcular injection of green tea on gingival health using a rabbit model.

MATERIALS AND METHODS

Sample Collection and study design

This study was carried out at the Hawler Medical University, College of Dentistry, Department of Periodontology, Erbil city during the period from 1st Jan 2012 up to 30th May 2012. Blood samples were collected for each normal rabbits before injection with 5% green tea solution. By Cardiocentesis, blood samples were collected under subcutaneous general anesthesia after an overnight fasting (12 – 14 hours). About 5 ml of blood was collected and dispensed into vacutainer plain tubes. After centrifugation at 3000r.p.m. for five minutes, the serum was stored at – 80 °C. After one week, rabbits injected with...
solution with highly significant difference (P<0.01).

Mean concentration of TNF-α (pg/ml) in sera of study groups

Table 2 and Figure 2 showed that the mean concentration of TNF-α was higher (23.02 pg/ml) in sera of group (B) when compared with its mean concentration (10.71 pg/ml) in sera of group (A) after injection with 5% green tea solution with highly significant difference (P<0.01).

Mean concentration of INF –γ (IU/ml) in sera of study groups

Table 3 and Figure 3 represented that the mean concentration of INF –γ was higher (23.25 IU /ml) in sera of group (B) when compared with its mean concentration (20.11 IU /ml) in sera of group (A) after injection with 5% green tea solution with significant difference (P<0.05).

DISCUSSION

Estimation of serum IL-1β:

This study found that the mean concentration of IL-1β was highly significant decrease in rabbit sera after injection with 5% green tea solution when compared with its mean concentration in rabbit sera before injection (P<0.01). Recent studies reported that IL-1β was a potent inducer of reactive oxygen species (ROS) via enhanced expression of enzyme, inducible nitric oxide synthase (iNOS) (9).

A study done by Singh and colleagues showed that the green tea poly phenol inhibited the IL-1β induced (iNOS) expression and activity (9).

A study which gives support to the above results demonstrated that the green tea poly phenol was found to be effective in reducing IL-1β -induced inflammatory cytokine from condrocyte (10). Another study found that the alveolar bone resorption and IL-1β expression induced by lipopolysacharide in gingival tissue were significantly decreased by injection or oral administration of green tea catechins (GTC). GTC inhibits nuclear translocation of NF-kappabβ activated by LPS (11).

In contrast to our finding, the results obtained from a study revealed that ECG improved the quality of scarring by inducing iNOS (12).

Estimation of serum TNF-α

This study found that the mean concentration of TNF-α was highly significant decrease in rabbit sera after injection with 5% green tea solution when compared with its mean concentration before injection (P<0.01). The local response to tissue injury involved the production of cytokines, thus increased plasma level of TNF-α at the site of inflammation (13).
A study done by Sutherland and colleagues showed that the catechins’ anti-inflammatory effects, in part, due to their scavenging of NO and reduction of NO synthase (NOS) activity (14).

Another study done by Lehner and colleagues mentioned that the radical scavenging plant polyphenol blunted TNF-α production after hemorrhage, indicating that ROS/RNS contribute to cytokine formation and release (15).

A study which give support to the above results demonstrated that the ROs - scavenging activity of green tea catechins inhibit NF-kappa B activation leading to inhibition of expression of the pro inflammatory and survival genes (16).

Estimation of serum INF-γ

The results of this study showed a significant decrease level of mean concentration of INF-γ in rabbit sera after injection with 5% green tea solution when compared with its mean concentration before injection (P<0.05).

A study done by Tedeschi and colleagues found that drinking green tea exerts a specific inhibitory action of INF-γ (17).

A study which gives support to the above results demonstrated that the reduced collagen induced arthritis incidence and severity was reflected in marked inhibition of the inflammatory mediator INF-γ in arthritis joint of green tea –fed mice (18).

The present study suggests that there is an association between the intake of green tea and periodontal health condition. One can concluded that the anti-inflammatory effects on the low grade inflammation could be enhanced by saccular injection of green tea by decreasing of IL-1β, TNF-α, INF-γ. Green tea saccular injection may be expected to have a more beneficial effect on the periodontal condition.

REFERENCES

Table 1: Mean concentration of IL-1β (pg/ml) in sera of rabbits before and after injection with 5% green tea solution

<table>
<thead>
<tr>
<th>Study Group</th>
<th>No.</th>
<th>Range of Concentration of serum IL-1β (pg/ml)</th>
<th>Mean Conc. of serum IL-1β (pg/ml)</th>
<th>SD</th>
<th>C.S by t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) After injection</td>
<td>20</td>
<td>31 – 41.5</td>
<td>36.85</td>
<td>2.66</td>
<td>P=0.001 C.S. = H.S</td>
</tr>
<tr>
<td>(B) Before injection</td>
<td>20</td>
<td>32.47 – 51.02</td>
<td>41.91</td>
<td>6.23</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Mean concentration of IL-1β (pg/ml) in sera of rabbits before and after injection with 5% green tea solution.

Table 2: Mean concentration of TNF-α (pg/ml) in sera of rabbits before and after injection with 5% green tea solution

<table>
<thead>
<tr>
<th>Study groups</th>
<th>No.</th>
<th>Range of Concentration of serum TNF-α (pg/ml)</th>
<th>Mean Conc. of serum TNF-α (pg/ml)</th>
<th>SD</th>
<th>C.S by t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) after injection</td>
<td>20</td>
<td>9.93 – 12.10</td>
<td>10.71</td>
<td>0.54</td>
<td>P=0.000</td>
</tr>
<tr>
<td>(B) before injection</td>
<td>20</td>
<td>15.7 – 48.8</td>
<td>23.02</td>
<td>6.94</td>
<td>C.S. = H.S</td>
</tr>
</tbody>
</table>

Figure 2: Mean concentration of TNF-α (pg/ml) in sera of rabbits before and after injection with 5% green tea solution

Table 3: Mean concentration of INF-γ (IU/ml) in sera of rabbits before and after injection with 5% green tea solution

<table>
<thead>
<tr>
<th>Study groups</th>
<th>No.</th>
<th>Range of Concentration of serum INF-γ (IU/ml)</th>
<th>Mean Conc. of serum INF-γ (IU/ml)</th>
<th>SD</th>
<th>C.S by t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) after injection</td>
<td>20</td>
<td>11.00 – 24.90</td>
<td>20.11</td>
<td>3.56</td>
<td>P=0.026</td>
</tr>
<tr>
<td>(B) before injection</td>
<td>20</td>
<td>20.50 – 33.5</td>
<td>23.25</td>
<td>2.84</td>
<td>C.S. = S</td>
</tr>
</tbody>
</table>

Oral and Maxillofacial Surgery and Periodontology 98
Figure 3: Mean concentration of INF-γ (IU/ml) in sera of rabbits before and after injection with 5% green tea solution.