Comparative study of some physico-chemical characteristics for Northern Al-Hammar marsh waters before destroyed and after Rehabilitation 2004

I. J. M. Al-Shawi

Department of Marine Environmental Chemistry, Marine Science Center- Basrah University
E-mail: Imad 1973 MSC @ Yahoo. Com

Abstract

Physico-chemical characteristics of water from three stations (1- Garmat bani saed, 2-Al-Hammar, 3- Al-Cheibyesh northern Al-Hammar marsh were determined during the period (Jan. 2004), (April. 2004) and (Jul. 2004) and compared with studies before destroyed. Electrical conductivity (E.C) of water was increasing in station (1) ranging between (3.7-3.9) mS/cm² while in other station (2, 3) were ranging (1.6-2.2) mS/cm², also salinity were increasing ranging between (2.36-3.49), (1.28-1.40) and (1.02-1.28)% for station (1-3) and respectively. Highest total dissolved solids (TDS) were recorded in station (1) ranging between (2368-2400) mg/l. Sulphate (SO₄) were distinctly higher in station (1) ranging between (1040-1250) mg/l compared with stations 2 and 3 that achieving (602-700), (361-400) mg/l respectively, Carbonate (HCO₃) were (220-313), (200-240) and (200-220) mg/l for station above. Chloride and calcium ions concentration were increasing in station 1 (1313-1350) mg/l and (144-133) mg/l for Cl and Ca²⁺ respectively. Total hardness (T.H) and magnesium ions concentration were highest in station (3) ranging between (600-650) mg/l, (133-141) mg/l for (T.H) and Mg²⁺. Nitrite levels ranging between (0.28-0.33), (0.27-0.36) and (0.30-0.41) µg-at N/l for station (1-3) respectively while Nitrate levels ranging between (27.6-35.5), (22.4-30.7) µg-at N/l for station 2 and 3 and lowest in station 1 ranging between (9.2-15.8) µg-at/ l. phosphate (PO₄) values were highest in station 3 (13.11-15.87) µg-at P/l compared with station 1 and 2 ranging between (0.161-0.813) and (2.232-2.811) µg-at P/l for station 1 and 2 respectively. Dissolved oxygen (D.O) levels for water were ranging between (7-8.6) mg/l for all station during study. Biological Oxygen Demand (BOD) were very high achieving (3.9-4.8), (3.9-3.6) and (6.1-6.8) mg/l for stations 1-3 respectively. The increasing of nutrients levels (NO₂, NO₃, PO₄) and Biological Oxygen demand (BOD) refer to increasing of microorganisms activities after return of water to Al-Ham mar marsh and decomposition of dead bodies left due to desiccation.
1- Introduction

Iraqi marshland situated in south-east of Iraq, it is a shallow aquatic ponds, its depth unlimited between (2-7)m with unlimited area 8000-30000 Km2 due to discharge level of Tigris and Euphrates rivers (Al-Kayat, 1975). Al-Hammar marsh, locally called Hor Al-Hammar is situated north-west Basrah city. It mainly receives its water from Euphrates river. Al-Hammar marsh has a large catchments area of 2000 Km2 at normal conditions, which may increase to 3000Km2 during the flooding season in spring (Al-Kayat, 1975). It extends for a distance of about 100Km from Suq-Al-Sheuok at west and Garmat Ali easterly in its southern part (Hussein et al., 1992). The marsh is greatly influenced by the rivers of Tigris and Euphrates (Al-Saadi et al., 1981). After 1991 about (90%)of Al-Hammar marsh were desiccated. In 2003 some part of Al-Hammar marsh was rehabilitated by water in north and south part. There are several ecological studies made to Al-Hammar marsh before desiccated including biotic and abiotic factors (Al-Saadi et al, 1981; Al-saadi and Al-Mousawi, 1988; Al-Aarajy, 1988; Hassan, 1988; Al-Zubidy, 1985; Al-Laami, 1986; Qaseem, 1986; and Al-Mousawi and Hussein, 1992). The present study is to compare Physico-Chemical characteristics for water northern of Al-Hammar marsh in (1- Garmat bani Saed, 2-Al-Hammar, 3-Al-Cheibyesh) before and after Rehabilitation 2004.

2-Experimental and Methods

During 2004 waters return to some parts of Iraqi marshland the study area in this paper covered three stations northern Al-Hammar marsh.

1- Garmat Bani Saaed
2- Al-Hamma town
3- Al-chebayesh town. Fig (1) Depth of water in these station from (1-1.5)m.

Sub-Surface water samples were collected for different period during 2004 from selected stations by (2) liters polyethylene container and transfer to Lab for analysis. Electrical conductivity (E.C) and Total Dissolved solids (TDS) determined by conductivity meter model (CC-41/ELMETRON) while salinity calculated by Multiply ECx0.64 Sulfate (SO$_4$), Chloride (Cl), Sodium (Na$^+$), Potassium (K$^+$) and Biological oxygen demand(BOD) determined According to (APHA, 1979). Carbonate (HCO$_3$), Calcium (Ca$^+$), Magnesium (Mg$^{2+}$), total hardness (T.H) and dissolved oxygen were measured according to (Lind, 1979). While nutrients measured according to (parson et al, 1984).
3-Results and Discussion

All results in present study are shown in table (1).

Recorded (E. C) and salinity Range (1.6-3.9)mS/cm², (1.02-2.49%) For (E.C) and salinity respectively, this results are not different from study before destroid that achieving (3.09)mS/cm², (1.98%) for (E.C) and salinity receptivity (Al-Aarajy, 1988) But the highest Values recorded in station (1) about (3.7-3.9), (2.36-2.49%) for E.C and salinity respectively, thus they may considered Al-Hammar marsh waters as oligohaline habitats according to (Reid,1961)that classified waters with salinity ranges from (0.2-5)% as oligohaline. Total Dissolved solids (TDS) were very high (2368-2400)mg/l in station 1, this results due to high current in this station led to release of chemical elements and clay particulate to the water, other values were less than station (1) Rang from (1280-1300), (1024-1200)mg/l for station 2, 3 respectively. Sulphate determination in present study is the first measurement in Iraqi marshland because there is no study about sulphate in marshland environment, the Sulphate values (1040-1250), (604-700) and (361-421)mg/l for stations (1-3) respectively. Carbonate in water refer to alkalinity, in this study the values were high in the range (200-312), (200-240) and (200-220) mg/l for stations (1 , 2 and 3) respectively, this results similar to other study of Iraqi internal waters. Total hardness in Iraqi water consist of mainly CaCO₃ and Mg(OH)₂ (Al-Issa, 1981). In present study total hardness were (500-600), (400-480) and (600-660)mg/l for station, (1, 2 and 3) respectively, these values are not different from data encountered in same station before desiccation by. (Al-Aarajy, 1988). When compared the total hardness values in present station north Al-Hammar marsh were very lowest than stations in middle Al-Hammar marsh (13765) mg/l in (Al-Zubiady, 1985), Wherever was (1808) mg/l in (Qassim,
1986; Al-Lammi, 1986) these differences of total hardness between northern and southern Al-Hammar marsh according to nature of soil. Thus all station of Al-Hammar marsh with very hard water according to (Lind, 1979). Calcium (Ca\(^{+2}\)) and Magnesium (Mg\(^{+2}\)) ions concentration were not different from studies before destroyed were to Calcium (144-165) (72-94) and (48-75) mg/l for station (1-3) respectively while Magnesium were (86-105), (79-93) and (133-141) mg/l for station (1, 2 and 3) respectively, except in (Al-Zubaidy, 1985) calcium achieving (3264) mg/l in Al-Deer station. Tab.(2). Nutrients levels were very increasing compared with studies before destroy in present study Nitrite levels (0.27-0.41) \(\mu\)g-at N/l, Nitrate levels (9.70-35.5) \(\mu\)g-at N/l, phosphate levels (0.161-15.87) \(\mu\)g-at P/l while Nutrients levels in same station before destroyed were Nitrite levels (0.001-0.4) \(\mu\)g-at N/l, Nitrate levels (0.39-1.71) \(\mu\)g-at N/l, phosphate levels (0.072-1.82) \(\mu\)g-at P/l encountered in (Al-Aarajy, 1988; Hassen, 1988).

This increasing of Nutrients levels in present study due to important of biological decomposition by microorganisms fore dead plants and other organisms that stile in marshland area after drying by microorganisms (stirling, 1985). Dissolved oxygen concentration were (7.0-8.0), (7.0-8.0) and (8.3-8.5) mg/l for station 1, 2 and 3 respectively. The relative decreasing of dissolved oxygen in present study compared with studies before destroyed due to increasing of biological oxygen demand to decompose organic material (Tayel et al, 1996), but biological oxygen demand were increasing in station (3) range from (6.1-6.8) mg/l while in other station (3.9-4.0) and (3.9-4.0) mg/l for station 1, 2 respectively, the highest values of station (3) may be due to increasing of biological degradation by bacteria and other microorganisms because of these station near to civil aggregation (Tayel et al, 1995). The values of (BOD) northern Al-Hammar Similar to data recorded in different studies of Iraqi marshland after rehabilitation (Al-Imarah et al. 2006).

<table>
<thead>
<tr>
<th>Station</th>
<th>Parameters</th>
<th>Ca(^{+2})</th>
<th>Si(^{4+})</th>
<th>K(^{+})</th>
<th>Mg(^{+2})</th>
<th>Cl(^{-})</th>
<th>T. I</th>
<th>NO(_3)</th>
<th>NO(_2)</th>
<th>pH</th>
<th>BOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canaan Kani</td>
<td>Min.</td>
<td>1.7</td>
<td>2.76</td>
<td>128</td>
<td>0.11</td>
<td>1.18</td>
<td>0.11</td>
<td>390</td>
<td>740</td>
<td>7.0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>2.9</td>
<td>2400</td>
<td>1250</td>
<td>110</td>
<td>1.35</td>
<td>1.35</td>
<td>490</td>
<td>620</td>
<td>7.0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.0</td>
<td>1280</td>
<td>604</td>
<td>0.42</td>
<td>0.72</td>
<td>0.72</td>
<td>390</td>
<td>620</td>
<td>7.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Al-Hammar</td>
<td>Min.</td>
<td>1.6</td>
<td>1.5</td>
<td>700</td>
<td>319</td>
<td>0.10</td>
<td>0.10</td>
<td>69</td>
<td>111</td>
<td>7.0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>2.0</td>
<td>1.29</td>
<td>1200</td>
<td>421</td>
<td>0.55</td>
<td>0.55</td>
<td>141</td>
<td>150</td>
<td>7.0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.0</td>
<td>1.26</td>
<td>1200</td>
<td>421</td>
<td>0.55</td>
<td>0.55</td>
<td>141</td>
<td>150</td>
<td>7.0</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Table (1): Range of some physico-chemical parameter of studied stations (1,2,3).
4- Conclusion

The physico-chemical characteristics for water in Northern Al-Hammar marsh (1-Garmat Buni Saed, 2- Al-Hammar, 3 – Chebiayesh) are similar to internal Iraqi water parameter except increasing of nutrient levels and Biological oxygen demand.

5-Reference

دراسة مقارنة لبعض الصفات الفيزيائية والكيميائية لمياه الجزء الشمالي لهور الحمار قبل التجهيف و بعد التأهيل 2004

عماد جاسم الشاوي
قسم الكيمياء البيئية البحرية، مركز علوم البحر / جامعة البصرة
E-mail: Imad 1973 MSC @ yahoo.Com

المتخص

تم تقييم بعض الصفات الفيزيائية والكيميائية لمياه الجزء الشمالي لهور الحمار في ثلاثة محطات (1 - كرمة ينك سعيد 2 - الحمار و 3 - الجباش) وقرر النتائج مع الدراسات السابقة قبل التجهيف. ارتفاع درجات التصليب الكهربائي في المحطة (1) إذ تراوحت ما بين (3.7 - 3.9) مليمتر/سم² في حين تراوحت المحطتين 2، 3 ما بين (1.6 - 2.2) وكذلك نوح زيادة في قيمة البلعمة في المحطة (1) وتراوحت القيم في المحطات من 1 - 3 ما بين (2.36 - 3.49) و (1.28 - 1.41) بوزن بالألف على التوالي. سجلت قيمة مراقبة في الموقع (1) للمواز والعائلي الثانيي (368-2400) مليمتر/ثانية. تراوحت قيم الكربونات المسيلة في المحطات (1-3) ما بين (1040-1250) و (600-700) مليمتر/ثانية. سجلت قيمة مرتفعة لتركيز أيون الكالسيوم (131-1350) مليمتر/ثانية وتركيز أيون الكالسيوم (133-144) مليمتر/ثانية في المحطة (1) بينما سجل انخفاض واضح قيم العصر الكلية (600-850) مليمتر/ثانية وتركيز أيون المغنيسيوم (133-141) مليمتر/ثانية في المحطة (3). تراوحت قيم النترات المسيلة ما بين (0.28-0.33) و (0.31-0.41) مليمتر/ثانية. تراوحت قيم الترتيب المسجلة ما بين (2.7-2.8) و (0.27-0.30) مليمتر/ثانية. تراوحت قيم الترتيب المسجلة ما بين (2.7-2.8) و (0.27-0.30) مليمتر/ثانية. تراوحت قيم الترتيب المسجلة ما بين (2.7-2.8) و (0.27-0.30) مليمتر/ثانية. تراوحت قيم الترتيب المسجلة ما بين (2.7-2.8) و (0.27-0.30) مليمتر/ثانية. تراوحت قيم الترتيب المسجلة ما بين (2.7-2.8) و (0.27-0.30) مليمتر/ثانية. تراوحت قيم الترتيب المسجلة ما بين (2.7-2.8) و (0.27-0.30) مليمتر/ثانية.