Receiver operator characteristics and diagnostic value of CA-125, progesterone, estradiol and β-hCG in the prediction of ectopic and abortive intrauterine gestations

Mena M. Abdul-Hussein (BSc)*,
Omar F. Abdul-Rasheed (PhD)**,
Hala Abdul Qadir Al-Moayed (C.A.B.O.G) ***

*BSc, Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Al-kadhmiya, Baghdad, Iraq
**Msc, PhD; Assistant Professor in Clinical Chemistry, Chemistry and Biochemistry Department, College of Medicine, Al-Nahrain University, Alkadhmiya, Baghdad, Iraq
*** M.B.Ch.B. D.G.O, C.A.B.O.G; Lecturer in Obstetrics and Gynecology Department, College of Medicine, Al-Nahrain University, Al-kadhmiya, Baghdad, Iraq

Corresponding author: - Dr-Omar F. Abdul-Rashed. E-mail: Omar_rasheed39@yahoo.com Phone: 009647901885283. PO Box: 70027

Abstract

Objective: The study was designed to investigate the predictive value of CA-125, progesterone, estradiol and β-hCG in the diagnosis of ectopic pregnancy (EP) and inevitable miscarriage.

Methods: Forty women with EP, 17 with intrauterine (IU) abortive gestation and 24 regular pregnant women (controls) were studied. Serum levels of CA-125, progesterone, estradiol and β-HCG were measured by Enzyme Linked Immuno Sorbent Assay (ELISA) techniques in 40 symptomatic women with ectopic pregnancy, 17 with intrauterine (IU) abortive gestation and 24 regular pregnant women (controls) during gestational age between (4-12) weeks at Al-Kadhmiya Teaching Hospital, Baghdad, Iraq, between November 2010 and June 2011.

Results: Women with EP had significantly lower CA-125, progesterone, estradiol and β-HCG concentrations, compared to both women with IU abortive pregnancy and controls. When using CA-125 concentration of 25.5 U/ml as a threshold for the diagnosis of ectopic pregnancy, sensitivity was 75.7%, specificity 100%, the positive predictive value was 100% and the negative predictive value 71.4%. When using a progesterone concentration of 5 ng/ml as a cut-point for the diagnosis of EP, sensitivity, specificity, positive and negative predictive values were 86.8%, 100%, 100%, 80%, respectively.

Conclusion: These results by using ROC curves. The measurement of CA-125 and progesterone levels is useful in discriminating ectopic and intrauterine abortive from normal gestations.

Key words: Cancer Antigen -125(CA-125), Progesterone, Beta subunit of Human Chorionic Gonadotropin (βHCG), Estradiol, Ectopic pregnancy, Normal intrauterine pregnancy.

Introduction

Ectopic pregnancy, the implantation of a fertilized ovum outside the endometrial cavity, continues to be a major cause of maternal morbidity and responsible for 6% of pregnancy deaths. CA-125 is a glycoprotein antigen commonly expressed by ovarian serous adenocarcinoma. Serum levels of CA-125 are used for monitoring the response to therapy in women with this cancer. It is also commonly elevated in non-malignant pelvic conditions including endometriosis, leiomyomas, and pelvic inflammatory disease and pregnancy. It has
been reported that the elevation of CA-125 level was observed in the first trimester and also immediately postpartum. The fetal chorion, amniotic fluid and maternal deciduas contain significant amounts of CA 125 and represent potential sources of the elevated serum levels of the protein in pregnancy.3,4

The aim of our study was to investigate the predictive power of maternal serum levels of CA-125, P, and E2 for prediction of EP from normal intrauterine pregnancies. Distinguishing normal from abnormal pregnancies is a clinical challenge because there is no definitive noninvasive diagnostic test available before visualization on ultrasonography. Clinicians must therefore follow patients over the course of several days to weeks for diagnosis 1,11 a time in which there is some potential for the ectopic pregnancy to rupture and result in life-threatening intra-abdominal hemorrhage. Early treatment may also allow for tubal-conserving procedures to be used, which is important for a patient’s future fertility.12,13 Therefore, development of a serum test to diagnose an ectopic pregnancy with high accuracy would be of great clinical significance. The diagnosis of ectopic pregnancy in early pregnancy requires both superior sensitivity and specificity given that a false-negative could lead to serious morbidity.

Methods:
Forty women with ectopic pregnancy (EP) gestational age 6.425±0.142 and 24 women with normal IU gestation (controls) gestational age 5.54±0.399 were studied. Serum samples from all 64 women were collected from Al-Kadhmiya Teaching Hospital, Baghdad, Iraq, between November 2010 and June 2011. Diagnosis of ectopic pregnancy was based on clinical assessment and transvaginal ultrasonography (U/S). All EP were treated with laparoscopic salpingectomy. All women included in the control group eventually gave birth to healthy live borns and did not undergo any gestational complication. From all women, blood was drawn by routine venipuncture. Blood samples were centrifuged at 3000 rpm and serum was stored at -20 ºC.

Results:
The basic anthropometric and clinical parameters of the women studied are presented in table 1. No significant difference in age, gestational age and body mass index (BMI) was observed between women with EP and women with normal IU gestation. The concentrations of CA-125, progesterone, estradiol, and β- hCG, of the women studied are summarized in table 2. CA-125 levels were significantly lower in the group of women with EP compared to women with controls (P < 0.005). The ROC curves demonstrated a significant discriminatory ability of decreased CA-125 levels for the diagnosis of ectopic pregnancy. The AUC for CA-125 was 0.913 (95%CI: 0.841–0.984). A significant difference was found in EP (P < 0.001) table 3. When using a CA-125 concentration of 20.5 U/ml as a cut-off value for the diagnosis of ectopic pregnancy from control groups, sensitivity was 75.5%, specificity 100%, the positive predictive value was 100% and the negative predictive value 71.4%.

Progesterone levels were significantly lower in women with EP, compared to woman with normal pregnancy (P < 0.00001).
Receiver operating characteristics analyses showed that progesterone value can be used for the differential diagnosis of EP from normal ones, with the areas under the curve being 0.979 (95%CI: 0.950-1.007). A significant difference was found in EP (P < 0.001) table 3. The threshold for progesterone to differentiate ectopic pregnancy from normal ones was 5ng/ml, with a sensitivity of 86.8% and specificity of 100%, the positive predictive value was 100% and the negative predictive value 80%.

Estradiol levels were significantly lower in women with EP, compared to normal pregnancy (P < 0.00).

The ROC curves demonstrated a significant discriminatory ability of decreased estradiol levels for the diagnosis of ectopic pregnancy. The AUC for estradiol was 0.971 (95%CI: 0.935–1.006). A significant difference was found in EP (P < 0.001) table 3.

When using estradiol concentration of 27.5pg/ml as a cut-off value for the diagnosis of ectopic pregnancy from control groups, sensitivity was 83.8%, specificity 100%, the positive predictive value was 100% and the negative predictive value 75%.

The β-hCG levels were significantly lower in EP compared normal pregnancies (P<0.000).

The ROC curves demonstrated a significant discriminatory ability of decreased β-hCG levels for the diagnosis of ectopic pregnancy. The AUC for β-hCG was 0.943 (95%CI: 0.88–1.000). A significant difference was found in EP (P < 0.001) table 3.

When using β-hCG concentration of 104.5 mIU/ml as a cut-off value for the diagnosis of ectopic pregnancy from control groups, sensitivity was 75%, specificity 100%, the positive predictive value was 100% and the negative predictive value 86%.

Table 1: Basic anthropometric and clinical parameters of the women studied; (mean ± SEM [minimum-maximum]).

<table>
<thead>
<tr>
<th>Type of pregnancy</th>
<th>Ectopic (n = 40)</th>
<th>IU normal (n = 24)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>28.97±0.957</td>
<td>25.8±1.139</td>
<td>0.2</td>
</tr>
<tr>
<td>(18-45)</td>
<td>(18 - 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.27±0.735</td>
<td>24.98±1.278</td>
<td>0.3</td>
</tr>
<tr>
<td>(18.2- 33.3)</td>
<td>(19 – 34.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weeks of pregnancy</td>
<td>6.425±0.142</td>
<td>5.54±0.399</td>
<td>0.4</td>
</tr>
<tr>
<td>(4 - 8)</td>
<td>(4 – 10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: CA-125, progesterone and estradiol, β-hCG levels of the women studied [mean _ SER. (minimum–maximum)].
Table 3: AUC for ROC analysis of different parameters with testing for statistical differences.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ectopic (n = 40)</th>
<th>IU normal (n = 24)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-125 (U/ml)</td>
<td>16.51± 2.39 (2-80)</td>
<td>74.25±18.5 (28-200)</td>
<td><0.005</td>
</tr>
<tr>
<td>Progesterone (ng/ml)</td>
<td>2.54±0.47 (1-10.3)</td>
<td>28.36±3.7 (8-50)</td>
<td><0.00</td>
</tr>
<tr>
<td>Estradiol (pg/ml)</td>
<td>13.4±2.14 (1-36)</td>
<td>112.7±23.6 (30-410)</td>
<td><0.00</td>
</tr>
<tr>
<td>hCG (mIU/mL)</td>
<td>72.75±12.27 (5 - 200)</td>
<td>249.54±18.008 (105 – 300)</td>
<td><0.00</td>
</tr>
</tbody>
</table>

Discussion

The CA-125 tumor marker is a cell-surface antigen derived from the surface coelomic epithelium, including the mucosa of the entire female genital tract and the germinal epithelium of the ovaries. The fetal chorion, amniotic fluid, and maternal decidua also have been shown to contain significant amounts of CA-125 protein.

In our study, the CA-125 in EP have been found lower than that in the normal pregnancy (P<0.005).

The low CA-125 levels in EP were explained by the impaired interaction between the fetal trophoblast and tubal mucosa.

The results of our study are similar with Kobayashi et al. who found that serum CA-125 levels are high in women with normal early pregnancy, spontaneous abortion, and hydatidiform mole, but they are low in women with tubal pregnancy, especially if there has been no uterine bleeding.

Nevertheless, some studies showed that serum CA 125 measurements failed to discriminate between EP, and normal pregnancy. Schmidt et al. They concluded that single serum measurements of CA 125 in symptomatic first trimester pregnant patients failed to discriminate between spontaneous abortion, ectopic, and normal pregnancies.
According to the results of this study, significant differences between serum ßHCG levels in case and control group were noticed (p<0.00). The specificity and sensitivity of single HCG measurement in detection of ectopic pregnancy at the cut-off level of 104mlu/ml were 100% and 85% respectively. Although about 85% of women with ectopic pregnancy have serum HCG levels lower than those seen in normal pregnancy at a similar age. However a single quantitative HCG assay cannot be used for diagnosis of ectopic pregnancy because the actual dates of ovulation and conception are not known for most women.

In these cases the measurement of serum progesterone is helpful.

In this study, we found progesterone levels to be significantly lower in the EP (P<0.00) than in the NIUP group.

The corpus luteum of women also secretes oestradiol (E2) in response to hCG and again could function as a luteal marker of pregnancy dynamics.

In our study, we found that the mean levels of E2 were significantly lower in the ectopic pregnancy patients than in NIUP (P<0.00).

According to our findings, the measurement of CA-125 levels have value and specific in the differential diagnosis of ectopic pregnancy and early normal intrauterine pregnancy (the sensitivity of the test, according to cut-off 20.5 value, was 75.7%, specificity 100%, PPV 100%, NPV 71.4%).

In our study, we concluded that the single measurement of progesterone and estradiol measurement is useful to differentiate normal pregnancies from abnormal ones (EP).

References

خصائص العامل المستلم وقيمة CA-125 والبروجسترون وال والاسترادايول في التنبؤ بالحمل والاسقاط

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-

الخلاصة

CA-125 و β-hCG و Progesterone و ال β-hCG و هرمون ال Progesterone و هرمون ال β-hCG و هرمون ال Progesterone و ال β-hCG و هرمون ال CA-125 و ال- Progesterone و ال- CA-125 و ال-)