Diagnosis of Cryptosporidium parvum oocysts from it's natural sources

T. M. Finish and Z. M. Tawfeek
College of Veterinary Medicine/ University of Mosul

Abstract

The study was conducted for diagnosis of Cryptosporidium parvum oocysts in water, soil and calves. A total of 156 samples were collected from rural and urban areas in Mosul city, divided in to four groups. The first group 54 different water sample sources, 32 soil samples, 50 fecal samples from diarrheic calves and 20 fecal samples from non-diarrheic animals of different ages, sexes, breeds and areas. The overall percentage of oocysts that were identified was 26%, in water 24%, in soil 31%. Most significant commonly Cryptosporidium parvum oocysts has been associated with diarrheic calves 32%, than in (control group) non-diarrheic animals 15%, (P≤0.05). It was concluded that Modified Ziehl-Neelsen Stain was more sensitive and accurate for diagnosis of oocyst in all groups of samples in our study 27% as compared to Giems' Stain 23% and Lugol's Iodine stain 17%.

Introduction

Cryptosporidiosis is an enteric diarrheal disease world wide distribution (1,2). Cryptosporidium parvum is a zoonotic protozoan parasite causing diarrhea in different animal species among them are young calves, and it causes major economic losses directly through mortality and poor growth (2,3). Cryptosporidiosis is typically an acute short-term infection (3). The parasite is transmitted by contaminated water, food, soil or exposure to feces (4). The oocysts is ovoid or spherical and measure 4-6 µm across the ooysts 2-4 sporozoites that are bow-shaped (5). Water borne outbreaks of cryptosporidiosis have been reported the most infection is an outbreak in Milwaukee during spring 1993 (6). Cryptosporidiosis has no vectors and transmitted by the fecal-oral route (5). It is believed that cryptosporidium oocysts have always been presented to some degree in water (6). Also the diseases may spread through contamination of food
and soil (4, 6). Calves affected with *Cryptosporidium* are usually one to four weeks of age (6). The *oocysts* is protected by an outer shell, referred to us thick-walled *oocysts*, which allows it to survive for long period of time outside the body in water, soil and can live in nature for 18 months (1). The aim of this study was to assess the incidence of *Cryptosporidium parvum oocysts* in water, soil and calves using different laboratory methods and stains and also to select the most sensitive and specific laboratory technique used for further diagnosis of *oocysts* in nature and calves.

Materials and Methods

- **Study Design:** A total of 156 samples including (water, soil and fecal samples from calves) were collected from urban and rural areas of Mosul city, (Telkeef, Kogjali, Cattle market, Hamma Al-ali, Muthana, College animal farm, Yarmook, Gayara) especially areas with animals husbandry and veterinary teaching hospital of the college (Mosul), also from cattle market in Mosul form February to September 2012.

- **Sample collection:** Water samples 54 were collected from water troughs, rainfall, sewage, stagnant water in volume (1-2L) from each different sources. Soil samples 32 from gardens animal yards, animals houses and from soil of veterinary teaching hospital in a weight 25-100 gm for each.

- **Fecal samples 70 from calves of different sexes, age (5 days to 9 month) breeds and areas, with and without diarrhea or intestinal illnesses.**

- **Methods of Diagnosis:** *Cryptosporidium parvum oocysts* were detected in the above samples as follows:

 A- Direct fecal microscopic examination two thin smears for each sample of feces stained by modified Ziehl-Neelsen stain and Lugol's iodine (7).

 B- Sedimentation technique for detection of *oocysts* in water samples, and stained by modified Ziehl-Neelsen stain and Giems' stain (7, 8).

 C- Floatation technique: using Sheathers sugar solution (Sp. gravity 1.2) for detection of *oocysts* in feces (7, 8).

 D- Filtration technique: *oocysts* were isolated from different soil samples and examined microscopically as mentioned by (9).

 Calibration of detected *oocysts* to determine mean diameters of some *oocysts* by using ocular micrometers and photographed using digital camera. Statistical Analyses of the data is according to Chi-square test using test concerning several proportions(10).

Results

The definitive diagnosis of *oocysts* of *cryptosporidium parvum* in water, soil, and calves by finding the characteristic ovoid or spherical shape of *oocysts* using various laboratory parasitological tests and Stains. Table (1) shows the parasitological findings of *oocysts* diagnosed and estimated in water 24%, in soil 31.2%, in diarrheic calves 32% and in control group of animals 15%. Moreover on calibration of oocysyts of different samples to estimate the mean diameter (Width × Length) of the *oocysts* detected. *Oocysts* in feces were larger than others, and some appear refractile, thick-walled and don't take the stain of Lugols' iodine (8).

<table>
<thead>
<tr>
<th>Type of samples</th>
<th>No. of Samples</th>
<th>No. of Positive</th>
<th>% of Positive</th>
<th>Diameters of oocysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>54</td>
<td>13</td>
<td>24%</td>
<td>3.8 × 5.2</td>
</tr>
<tr>
<td>Soil</td>
<td>32</td>
<td>10</td>
<td>31%</td>
<td>4.3 × 5.6</td>
</tr>
<tr>
<td>Diarrheic calves</td>
<td>50</td>
<td>16</td>
<td>32%</td>
<td>5.4 × 6.6</td>
</tr>
<tr>
<td>Non-diarrheic calves (feces)</td>
<td>20</td>
<td>3</td>
<td>15%</td>
<td>4.9 × 6.3</td>
</tr>
<tr>
<td>Total</td>
<td>156</td>
<td>42</td>
<td>26%</td>
<td></td>
</tr>
</tbody>
</table>

Table (2) shows the *oocysts* burden of diarrheic calves in animals 32% and in non-diarrheic animals 15%.

Table (2) Parasitological Findings of *Cryptosporidium parvum* infection in Calves using different lab. stain

<table>
<thead>
<tr>
<th>Samples</th>
<th>Stain</th>
<th>Mod. Z.N. stain</th>
<th>Lugol's iodine stain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of (+)</td>
<td>%</td>
<td>No. of (+)</td>
</tr>
<tr>
<td>Diarrheic calves (50).</td>
<td>16</td>
<td>32% *</td>
<td>10</td>
</tr>
<tr>
<td>Non-diarrheic feces (20)</td>
<td>3</td>
<td>15% *</td>
<td>2</td>
</tr>
<tr>
<td>Total 70</td>
<td>19</td>
<td>27% *</td>
<td>12</td>
</tr>
</tbody>
</table>

* P≤ 0.05
Table (3) *Cryptosporidium parvum* oocysts isolated from Water and Soil

<table>
<thead>
<tr>
<th>Sample</th>
<th>Stain</th>
<th>Mod. Z.N. stain *</th>
<th>Giems Stain</th>
<th>No of (+)</th>
<th>%</th>
<th>No of (+)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (54)</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>24%</td>
<td>11</td>
<td>20%</td>
</tr>
<tr>
<td>Soil (32)</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>31% *</td>
<td>9</td>
<td>28%</td>
</tr>
<tr>
<td>Total (86)</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>26% *</td>
<td>20</td>
<td>23%</td>
</tr>
</tbody>
</table>

* P≤ 0.05

The modified Z.N stain method proved and gave significant higher percentage of oocyst recovery in water 24%, in soil 31.2% and 32% in diarrheic calves, and 15% in non-diarrheic calves, than other stains (Lugol's iodine and Giems stain). Modified Ziehl-Neelsen stained oocyst appeared deep red to pink color spherical to ovoid, some containing black granules and mean average 3.2-6.6 µm across (Table 1, Fig. 1). Giems stained oocysts appeared bluish cytoplasm with reddish granules Fig (2). Lugol's iodine stained oocysts observed in fecal smear showed brownish color and some oocysts don’t take the stain (Fig 3). Two types of oocysts were diagnosed thick-walled and thin-walled oocysts. The thick-walled type are passed in faeces. The thin-walled oocysts infect new enterocytes (Small intestine) causing autoinfection (11). In all samples that were examined microscopically the No. of isolated oocyst/field (Oil Immersion) is low ≤ 4.

Fig (1) Modified Ziehl-Neelsen Stain *Oocysts of Cryptosporidium parvum*

Fig (2) Giems' Stain *Oocysts of Cryptosporidium parvum*

Fig (3) Lugols Iodine Stain *Oocysts of Cryptosporidium parvum*
Discussion

Cryptosporidiosis is primarily a water borne illness (2, 9). Infection through contact with contaminated fecal mater of cattle and calves carrying the oocysts to food, soil, raw water (5, 11). The results of this study revealed that oocysts recovery from water was 24%, this is in agreement with (12, 13, 14) who stated that the oocysts in different water samples and Tigers revere in Mosul city was 18.3%. Oocysts diagnosed in soil was 31.2%, this observation was supported by idea mentioned by (14, 15). In this study Cryptosporidium parvum oocysts detection is more in diarrheic calves 32% than in non-diarrheic calves 15% (P≤0.05), this finding are similar to reports previously mentioned by (17, 18, 19). The fact that the oocysts of this parasite have the ability to live in water and nature for long time, in a humid environment, cool and damp/wet. Contaminated water with oocysts, sewage, manure, food, soil can infect calves (16). Our data showed that modified Ziehl-Neelsen stained oocysts of all samples (Table 2 and 3) (Fig 1) detection rate was higher and specific for diagnosis of this parasite, this is in agreement with the results reported by (17, 18, 19) and gave better diagnosis as compared with others stains used in this study. The morphology is related to the spp. nature of oocysts in different stained smears as shown in Fig. (1), (2) and (3).

References

References

