The effect of Nandrolone Decanoate on the Epididymis Weight and it's Histological Structure in Adult Male Mice

Shiama Ahmed Rahim
College of science for women - Univ. of Babylon

Abstract
This study aimed to identify the effect of different doses of nandrolone decanoate on epididymis weight and histological changes in epididymis in adult male mice. These males were injected subcutaneously (in distled region of femur) with (50,100mg/kg body weight) every 2 days for 30 days. Histological section examination shows reduction of the diameter of epididymal tubules, the diameter of lumen of epididymal and the height of epithelial cells in (caput & cauda) of epididymis and increase the percentage of damage in epididymal caput tubules for treatment group in comparing with control group which injected with normal saline and revealed histopathological changes includes accumulation of the odematous fluid inside the tubules, interstitial spaces between tubules, degregation of epithelial epididymis and absence of tubules from sperm.

Introduction
Anabolic- androgen steroid (AASs) are synthetic derivatives of testosterone and are important pharmacologically for treatment of growth deficiency, anemia, sexual dysfunction of chronic renal failure and osteoprosis (Doust et al., 2007; Soliman & Oreopoules, 1994) and combination of these compounds used by athletes and muscle builders with the sole purpose of improving performance, ability, appearance or muscle mass (Shittu et al., 2006).

Some researchers reported that AASs have negative health consequences including endocrine, hepatic, cardiovascular and behavioral disturbance (Wood, 2004; Clerico et al., 1981). AASs compound greatly affect the male pituitary –gonadal axis, hypogonadosim can be induced characterized by decreased serum testosterone concentrations, testicular atrophy and impaired spermatogenesis (Clark et al., 1997; Wroblewska, 1997).

Torres- Colleja (2001) reported that sperm count and normal sperm morphology were significantly reduced in AASs abuser bodybuilder.

Mesbah etal (2007) showed that administration of AASs caused degenerated change on some testicular structures, this adverse effect of AASs is due to it's including to circulating testosterone elevation to the range likely to be used in hormonal male contraception (Daryl et al., 2004).

Within the epididymis, contraceptive effects could be mediated on the spermatozoa directly via the epididymal epithelium and epididymal fluids composition or on epididymal peritubular muscle, all three of these aspects of epididymal function have been investigated as potential contraceptive targets. (Anderson and Baird, 2002). The obective of this study to assess the effect of
AASs (Nandrolone Decanoate) on histological changes of epididymis and its weight in adult male albino mice.

Material and Methods

were grouped randomized into three Fifteen adult male albino mice (balb/C) group weighting 18.4g-22.8g

Two groups injected subcutaneously (in distled region of femur) with 50 and 100mg \(\frac{\text{kg}}{\text{body weight}} \) nandrolone decanoate (NA) every 2 days for 30 days while control group was injected with 0.9 \% normal saline. The animals were housed at 22-25 C with 12-h light \text{ - dark cycle}. After 30 days from injection NA the animals were sacrificed and their epididymis removed and weighted by sensitive digital balance. The organs weight to body weight ratio were then calculated as mg/100g of body weight.

The epididymis were fixed by formaline 10\% for histological sectioning (Presnell & Schreibman, 1997), then the sections were examined by using compound microscope and the measurements were according by using ocular micrometer after calibrated with stage micrometer.

Twenty readings for the diameter of epididymal tubules (caput & cauda), twenty readings for the diameter of epididymis lumen (caput & cauda) and twenty readings for the height of epithelial cells (caput & cauda) was measured for each animal.

Percentage of damage of caput epididymal tubules was calculated as previously described in (Balash et al., 1987) according to the following relation:

\[
\text{Percentage of damage} = \frac{\text{number of damage tubules}}{\text{Total number of tubules}} \times 100
\]

Photographing was achieved by using Olympus model DB2-N180 microscope which provided by computer type LG. Complete randomized design (CRD) F-test was applied and followed by LSD test for analysing the results (Al-Rawi, 2000)

Results

The weight of epididymis was a significantly reduced in experimental groups compared with those of the control as showing in figure (1).

The treated groups showed significantly decrease (p<0.01), (p<0.05) in the means of diameter of epididymal tubules in caput and means of epithelial cell height in caput that compared to control that showing in figure (2), (4).

In this study, showed an insignificantly decrease in the mean of diameter epididymal tubules (cauda), mean of epithelial cell height (cauda) and mean of diameter epididymal lumen (cauda) in treated animals as compared to control as shown in figure (3), (5), (7). Through the study of histological sections showed an insignificantly decreased in the means of diameter epididymal tubules, means of epithelial cell height (in cauda) and means of diameter of epididymal lumen in caput for 100mg/kg group and cauda as compared to control as shown in figure (3, 5, 6, 7).

In the present study, significant increase (p<0.01) in the mean diameter of epididymal lumen caput for experimental mice (which injected with 50mg/kg) as shown in figure (6). In addition to this findings our study showed that reduced content of spermatozoa in the lumen of epididymal tubules in experimental mice was showed in picture (4, 5, 6, 7, 8, 9, 10, 11), Our study also showed accumulation of the oedematous fluid inside epididymal tubules was showed picture (5, 9, 11), The results of this study
reported the treatment of nandrolone decanoate caused increase percentage of damage in epididymal caput tubules.

Figure (1) epididymis weight ration (mg/100 gm) of body weight in male mice which treated in different doses of nandrolone decanoate.

Figure (2) Diameter of caput epididymal tubules (mictometer) in male mice which treated in different doses of nandrolone decanoate.

* significant decrease at (0.05) level.
** significant decrease at (P<0.01) level.

6.52 * L.S.D=
9.82 * L.S.D.
Figure (3) Diameter of cauda epididymal tubules (micrometer) in male mice which treated in different doses of nandrolone decanoate.

Figure (4) Height of epithelial cell of caput epididymal tubules (micrometer) in male mice which treated in different doses of nandrolone decanoate.

** significant decrease at (p<0.01) level.
L.S.D.=7.81
Figure (5) height of epithelial cell of cauda epididymal tubules (mictometer) in male mouse which treated in different doses of nandrolone decanoate.

Figure (6) Diameter of epididymal caput lumen (mictometer) in male mice which treated in different doses of nandrolone decanoate. ** significant decrease at (p<0.01) level.

L.S.D.=7.032
Figure (7) Diameter of cauda epididymal lumen (mictometer) in male mice which treated in different doses of nandrolone decanoate.

Figure (8) Percentage of damage of caput epididymal in male mice which treated in different doses of nandrolone decanoate.
picture (1): Cross-section (10x) for cauda epididymis mice (control group) show: normal view for epididymal tubules.

picture (2): Cross-section (40x) for cauda epididymis mice (control group) show: normal view for epididymal tubules.
picture (3): Cross-section (40x) for caput epididymis mice (control group) show:
normal view for epididymal tubules.

Picture (4): Cross-section (10x) for caput epididymis mice (100mg/kg) show:
absence of sperm from tubules, damage in tubules walls, interstitial space between tubules.
Picture (5): Cross-section (40x) for caput epididymis mice (100mg/kg) show: absence of sperm from tubules, interstitial space between tubules and accumulation edematous fluids inside tubules.

Picture (6): Cross-section (10x) for cauda epididymis mice (100mg/kg) show: absence of sperm from tubules, damage in tubules wall.
Picture (7): Cross-section (40x) for cauda epididymis mice (100mg/kg) show: absence of sperm from tubules, damage in tubules walls.

Picture (8): Cross-section (10x) for cauda epididymis mice (50mg/kg) show: absence of sperm from tubules, damage in tubules walls, interstitial space between tubules and damage interstitial tissue.
Picture (9): Cross-section (40x) for cauda epididymis mice (50mg/kg) show: absence of sperm from tubules, damage in tubules walls and accumulation odematous fluids inside tubules.

Picture (10): Cross-section (10x) for caput epididymis mice (50mg/kg) show: absence of sperm from tubules, accumulation odematous fluids inside tubules and interstitial space between tubules.
Picture (11): Cross-section (40x) for caput epididymis mice (50mg/kg) show: absence of sperm from tubules, accumulation of edematous fluids inside tubules and interstitial space between tubules.

References

