CMC Determination and Thermodynamic Micellisation Of NPE Surfactant In Aqueous And CH₃OH – H₂O Solvents

Sameer H. Kareem * Lamees Abid Zead*

Received 26, September, 2012
Accepted 5, December, 2012

Abstract:
The critical micelle concentration (CMC) of nonylphenolethoxylate (NPE) surfactant has been determined by measuring the surface tension as a function of the molar concentration of the surfactant in aqueous and binary mixture of water + methanol solutions at a temperature range from 20°C to 35°C. The interfacial parameters Γmax, Amin, Πcmc and ΔG°ads were calculated. The results indicate that the CMC increases as the temperature increases and that the addition of methanol the CMC decreases. The thermodynamic parameters such as standard Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) of micellization were estimated using the change of CMC with temperature. The enthalpy – entropy compensation behavior of the surfactant was evaluated and a good linearity in the compensation plot has been observed.

Key words: Thermodynamic Micellisation, CH₃OH – H₂O Solvents

Introduction:
Critical micelle concentration (CMC) of a surfactant is defined as the optimum aqueous concentration of the surfactant at which micelles begin to form under a specific reaction condition. CMC of a surfactant is an extremely important parameter in view of its importance in determination and optimization of various characteristic properties of micelles such as micellar stability and binding affinity, binding constant of a solubilizate as well as surfactant use in facial cleansers, shampoo, and baby-care products [1].

Thermodynamic parameters that describe the hydrophobic interaction of different surfactant (ionic and nonionic) with water have been the subject of numerous studies. The CMC and thermodynamic functions ΔG°m, ΔH°m and ΔS°m for the micellization process of two pyridinium cationic surfactants in aqueous solution were studied by a potentiometric method using surfactant cation sensitive membrane electrodes [2]. Micellization, surface activity and structures of the aggregates of nonionic surfactant n-octyl-β-D-thioglucopyranoside in aqueous solutions through a temperature range have been investigated by using surface tension measurements [3]. The mixed micellization of 1, 2-bis (dodecyl dimethyl ammonium) ethane di-bromide and sodium lauryl ether sulfate has been investigated using a surface and electrical conductometry apparatus [4]. The effect of some organic additives such as glucose, phenol, caffeine, urea and formamide on the CMC of an anionic surfactant sodium dodecyl sulfate has been studied by conductance measurements [5]. The CMC for aqueous solution of C₁₀,C₁₂,C₁₄ and C₁₆ triphenylphosphonium bromide and thermodynamic

*Department of Chemistry - College of Science for Women – Baghdad University
parameters ΔG_m, ΔH_m, ΔS_m were estimated using conductivity data[6]. In the present work, we have investigated the CMC and thermodynamics of micellization of nonylphenoletloethoxylate (NPE) surfactant by surface tension method in aqueous binary mixture water + methanol solution and at temperature range between (20-35) °C.

Materials and methods:
The nonylphenoletloethoxylate (NPE) surfactant of the highest purity commercially available were obtained from the state company of vegetables oil and used as received. It's a chemical formula $C_{35}H_{46}O_{11}$ and molecular mass 660 g mol$^{-1}$.

Anhydrous methyl alcohol was analytical purity. The mother surfactant solutions were prepared by weight and stored at room temperature until use. The CMC were determined by surface tension. They were performed using Du-Nony type tensiometer with Pt ring. It was derived from the break points in the plots of surface tension versus molar concentrating.

Results and Discussion:
The surface tension of NPE solution was measured as a function of surfactant concentration at various temperatures. The plots of surface tension versus the concentration of surfactant at different temperatures were presented in Figure (1).

![Surface tension versus concentration](image1)

Fig (1): The variation of surface tension versus molar Concentration.

![Surface tension versus lnC](image2)

Fig (2): Typical plot of surface tension versus lnC at 293K.
The sharp breakpoint shown in the plots of Figure (1) which corresponded to the CMC value at each temperature are listed in Table (1) along with their respective maximum surface excess concentration (Γ_{max}), minimum area per molecule (A_{min}), surface pressure at the CMC (Π_{cmc}) and standard free energy of adsorption (ΔG_{ads}^*) values.

The maximum surface excess concentration and the minimum area per molecule were computed from the surface tension plots using the following relations:

$$\Gamma_{\text{max}} = \frac{-(\partial \gamma / \partial \ln c)_{\text{CMC}}}{RT} \quad \text{(1)}$$

$$A_{\text{min}} = \frac{1}{NA \Gamma_{\text{max}}} \quad \text{(2)}$$

Where N_A is Avogadro number and $(\partial \gamma / \partial \ln c)$ is determined from the slope of the plot of γ versus $\ln c$ which are illustrated in Figure (2) as a typical form. The surface pressure at the CMC, Π_{cmc}, was obtained from the relationship:

$$\Pi_{\text{cmc}} = \gamma - \gamma_{\text{cmc}} \quad \text{(3)}$$

Where γ and γ_{CMC} are surface tensions of the solvent and of the micellar solution at the CMC respectively. The standard free energy of adsorption, ΔG_{ads}^*, was determined using the equation:

$$\Delta G_{\text{ads}}^* = \Delta G_m - \frac{\pi_{\text{CMC}}}{\Gamma_{\text{max}}} \quad \text{(4)}$$

Where ΔG_m is standard free energy of micelle formation.

Table (1): surface Excess concentration (Γ_{max}), minimum area per molecule (A_{min}), surface pressure at the CMC (Π_{cmc}), and Gibbs Energy of adsorption (ΔG_{ads}^*) for NPE at different temperatures.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>CMC (M)</th>
<th>Π_{cmc} (mN/m)</th>
<th>$\Gamma_{\text{max}} * 10^3$ (mmol/m2)</th>
<th>A_{min} (Å2/molecule)</th>
<th>ΔG_{ads}^* (KJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>6.06×10^{-3}</td>
<td>42.94</td>
<td>3.99</td>
<td>41.59</td>
<td>22.68</td>
</tr>
<tr>
<td>298</td>
<td>7.58×10^{-3}</td>
<td>42.01</td>
<td>3.812</td>
<td>43.56</td>
<td>22.42</td>
</tr>
<tr>
<td>303</td>
<td>9.09×10^{-3}</td>
<td>41.73</td>
<td>3.39</td>
<td>48.98</td>
<td>21.19</td>
</tr>
<tr>
<td>308</td>
<td>10.60×10^{-3}</td>
<td>40.88</td>
<td>2.85</td>
<td>58.26</td>
<td>19.36</td>
</tr>
</tbody>
</table>

The data in Table (1) indicate that in the temperature range studied the CMC of surfactant increases as the temperature increased. This may be due to the fact that the surfactants molecules dissolved in water; the hydrophobic group distorts the water structure. The increase in temperature also causes the increase in breakdown of the structured water surrounding the hydrophobic group, which disfavors micellization [7]. Also, it can be seen from Table (1) that ΔG_{ads}^* values are negative and become less negative as temperature increases which indicate that the adsorption of the surfactant in the air-liquid interface occurs spontaneously and becomes less spontaneous at higher temperatures.

The temperature dependence of the CMC of the surfactant has been used to obtain the thermodynamic parameters of micellization. The standard free energy of micelle formation ΔG_m^* in the case of nonionic surfactant was calculated by the equation:

$$\Delta G_m^* = RT \ln X_{\text{CMC}} \quad \text{(5)}$$

Where X_{CMC} is the mole fraction of surfactant at the CMC. The enthalpy of micellization ΔH_m^* was obtained by applying the Gibbs-Helmholtz equation to the equation above:

$$\Delta H_m^* = -RT^2 \left(\frac{\partial \ln X_{\text{CMC}}}{\partial T} \right) \quad \text{(6)}$$

ΔH_m^* was evaluated from the slope of the plot of $\ln X_{\text{CMC}}$ versus...
temperature, Figure (4). The entropy of micellization process ΔS_m^* was estimated from the equation:

$$\Delta G_m^* = \Delta H_m^* - T\Delta S_m^*$$

(7)

ΔG_m^*, ΔH_m^* and ΔS_m^* that have been obtained by applying the above equations for the NPE surfactant are reported in Table (2).

Fig (3): The plot of lnX$_{\text{CMC}}$ versus temperature

Table (2): Thermodynamic parameter of micellization for NPE at different temperatures.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>$-\Delta G_m^*$ (KJ/mol)</th>
<th>$-\Delta H_m^*$ (KJ/mol)</th>
<th>ΔS_m^* (JK$^{-1}$mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>33.44</td>
<td>15.77</td>
<td>17.68</td>
</tr>
<tr>
<td>298</td>
<td>33.44</td>
<td>16.32</td>
<td>17.13</td>
</tr>
<tr>
<td>303</td>
<td>33.50</td>
<td>16.87</td>
<td>16.63</td>
</tr>
<tr>
<td>308</td>
<td>33.72</td>
<td>17.43</td>
<td>16.29</td>
</tr>
</tbody>
</table>

From the results presented in Table (2), it can be generalized that the free energy ΔG_m^* is negative in the whole temperature range studied which indicates that the micellization process is spontaneous. ΔH_m^* is negative and increased as temperature increased which indicates that the micellization is exothermic. The entropy of micellization ΔS_m^* is positive in all temperature range and decreases with increase in temperature. This is due to the fact that the head group is more hydrated than the hydrophobic tail with increasing temperature which leads to an overall ordering of the system hence, the lowering of the entropy with increase in temperature [6].

Several chemical processes exhibit a linear relation between ΔH_m^* and ΔS_m^* and shown for the present surfactant in Figure (4).

Fig (4). The enthalpy – entropy compensation
This phenomenon is known as enthalpy-entropy compensation [8], and a good linearity \((R^2 = 0.9885)\) in the compensation plot has been observed.

Water- methanol mixed media

Figure (5) shows a representative plot of the surface tension of the NPE solution of 15% methanol against the ln [NPE] at 293 and 303 K. The CMC of the surfactant solution was estimated from the break point in the surface tension plots and recorded in Table (1).

It was observed that the CMC of the surfactant in the mixed solvent (15% methanol) increased as compared with aqueous solvent. This indicates that the addition of methanol, which act as water structure breakers, decrease the hydrophobic effect resulting into an increase in the CMC of the surfactant [9]. Breaking of water structure by organic solvents would facilitate interactions between the hydrophobic tail of the surfactant molecules and the hydrophobic part of organic solvent molecules by hydrophobic part of organic solvent that would lead to delaying the aggregation of the surfactant monomers form micelles and hence the increase in the CMC of the surfactant. The estimated values of \(\Gamma_{\text{max}}, A_{\text{min}}, \Pi_{\text{max}}\) and \(\Delta G_{\text{ads}}^\circ\) for the NPE solution for the mixed media are recorded in Table (3).

Table (3): surface Excess concentration \((\Gamma_{\text{max}})\), minimum area per molecule \((A_{\text{min}})\), surface pressure at the CMC \((\Pi_{\text{max}})\), and Gibbs Energy of adsorption \((\Delta G_{\text{ads}}^\circ)\) for NPE in 15% methanol.

<table>
<thead>
<tr>
<th>T/K</th>
<th>(\Pi_{\text{max}}) (mN/m)</th>
<th>(\Gamma_{\text{Max}} \times 10^4) (mmol/m²)</th>
<th>(A_{\text{min}}) (Å²/molecule)</th>
<th>(-\Delta G_{\text{ads}}^\circ) (KJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>0.322</td>
<td>2.4</td>
<td>6.92</td>
<td>43.63</td>
</tr>
<tr>
<td>303</td>
<td>0.295</td>
<td>2.5</td>
<td>6.64</td>
<td>42.79</td>
</tr>
</tbody>
</table>

The thermodynamic parameters of micellization that we have obtained by applying the same procedure as aqueous solution are reported in Table (4).
Table (4): The thermodynamic parameters of micellization for NPE in 15% methanol.

<table>
<thead>
<tr>
<th>T/K</th>
<th>CMC(M)</th>
<th>(-\Delta G_{mic}^{\circ}) (KJ/mol)</th>
<th>(\Delta G_{trans}^{\circ})</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>0.000227</td>
<td>30.21</td>
<td>3.236</td>
</tr>
<tr>
<td>303</td>
<td>0.000242</td>
<td>30.99</td>
<td>2.51</td>
</tr>
</tbody>
</table>

It is possible to evaluate the effect of the co-solvent on the micelle aggregation process by means of free energy of transfer, \(\Delta G_{trans}^{\circ}\), which is defined by [10]:

\[
\Delta G_{trans}^{\circ} = (\Delta G_{mic}^{\circ})_{\text{CH}_3\text{OH}-\text{H}_2\text{O}} - (\Delta G_{mic}^{\circ})_{\text{H}_2\text{O}}
\]

\(\Delta G_{trans}^{\circ}\) estimated are listed in Table (4). The positive values of \(\Delta G_{trans}^{\circ}\) can be understood on the basis of a reduction in the solvophobic interaction caused by the improved solvation, which leads to an increase in the solubility of the hydrocarbon tails in the presence of organic solvent and consequently in an increase in the CMC[11].

Conclusions:
It can be concluded the followings:
1- From the surface tension measurements, we have obtained the CMC of NPE solution and surface properties of the surfactant between 20 and 35 °C.
2- The adsorption data in the air-liquid interface showed that the adsorption of the surfactant occurs spontaneously and becomes more spontaneous at higher temperatures.
3- In the investigated systems we found that the enthalpy–entropy compensation operates and a good linearity has been observed.
4- The thermodynamic parameters of micellization, \(\Delta G_m^{\circ}\), \(\Delta H_m^{\circ}\), and \(\Delta S_m^{\circ}\) were calculated and indicate that the micellelization process is spontaneous and exothermic in nature.
5- The study of the effect of CH3OH content on the CMC shows that the micellelization process is less favorable in the methanol - water mixture. This effect has been ascribed to the structure-breaking ability of CH3OH.

References:
7- Li-Jen che,shi-yow lin, chiuang-changhuang and En-MingChem.

Summary:

1- The effect of temperature on the critical micelle concentration of Nonyl Phenol Ethoxylate surfactant in water and aqueous systems. The change in critical micelle concentration (CMC) with temperature was studied. It was found that CMC decreases with increasing temperature in water and increases with the addition of a limited amount of methanol. This behavior is attributed to the enthalpy-entropy compensation phenomenon, which suggests that the micelle formation is a thermodynamically favorable process. The thermodynamic parameters, such as free energy of adsorption, enthalpy and entropy of micellization, were calculated from the observed changes in CMC with temperature. The compensation phenomenon is further supported by the observed changes in the entropy and enthalpy of micellization with temperature. Overall, these findings contribute to a better understanding of the behavior of surfactants in aqueous systems and their potential applications in various fields.