تأثير جهد هوائي متدرج الشدة في بعض متغيرات التنفس ومكونات الدم لدى طلبة المرحلة الأولى في قسم التربية الرياضية

م. م. عمر علاء الدين احمد النقيب
قسم التربية الرياضية
كلية التربية الأساسية / جامعة الموصل

ملخص البحث:

لم يعد خفيا تأثير أنواع الجهد المختلفة التي يقوم بها الإنسان على أجهزته الوظيفية وياتي ذلك من خلال الجهود الشديدة التي قام بها علماء كثر على مدى عقود من السنين، وكما ظهرت تقنيات جديدة لقياس الظواهر الفسيولوجية المختلفة قام الباحثون والعلماء باستغلالها من أجل الإحاطة بالظواهر السابقة ومحاولة اكتشاف ظواهر فسيولوجية جديدة في الجسم البشري.

يؤدي التدريب الرياضي إلى حدوث تغيرات في مكونات الدم والجهاز التنفسي كما يحدث بالنسبة لأي جهاز من أجهزة الجسم الأخرى، وهذه التغيرات نوعان: منها ما هو مؤقت (أي تغيرات تحدث بصفة مؤقتة كاستجابة لأداء جهد يدئ ثم تعود هذه المتغيرات إلى حالتها في وقت الراحة)، ومنها ما يتميز بالاستمرارية نسبيا (أي التغيرات التي تحدث في هذه المتغيرات نتيجة للانظام في ممارسة التدريب الرياضي لفترة معينة مما يؤدي إلى تكييف الدم لأداء التدريب البدني).

هدف البحث الحالي إلى:

- الكشف عن تأثير الجهد الهوائي المتدرج الشدة في قيم بعض متغيرات التنفس (عدد مرات التنفس، معدل النفس الطبيعي، التهوية الرئوية).
- الكشف عن تأثير الجهد الهوائي المتدرج الشدة في قيم بعض مكونات الدم (خلايا الدم الحمر، خلايا الدم البيض، الهيموكلوبين).

وقد فرض البحث:

بوجود فروق ذات دلالة إحصائية في نسب مكونات الدم (خلايا الدم الحمر، خلايا الدم البيض، الهيموكلوبين) ومتغيرات التنفس (عدد مرات التنفس، حجم الهواء المتنفس، التهوية الرئوية) قبل أداء جهد هوائي متدرج الشدة وبعده.

استخدم الباحث النهج الوصفي لملامته وطبيعة البحث، وتمت عينة البحث من 11 طالباً بأعمار (18-21) سنة والذين يمثلون المرحلة الأولى في كلية التربية الأساسية/قسم التربية الرياضية - جامعة الموصل، واستخدم الباحث الاختبار والقياس كوسائل لجمع البيانات.
The impact of graded aerobic effort on some breathing variables and blood Components of first year students in Physical Education Department

Asst. Lect. Omar Alaadeen Ahmed AL- Nakib
Department of Physical Education
College of Basic Education / Mosul University

Abstract:

The Effect of various effort Kinds made by man on his functional devices is not a secret any more. This comes from the precious efforts made by many scientists for many decades. Whenever modern technologies measuring various physiological appear, researchers use them to recap other phenomena and discover new physiological phenomena in the human body. Exercise lead to make changes in blood ingredients and the respiratory device as it is the case with any other body organ and the changes are of two kinds: (temporal i.e. changes that occur temporarily as a response to physiologoyal effort and turn back in rest) and relatively continuous (the changes that happen in these variables due to regularity in practice for a certain time which lead to adaptation of blood for doing exercise).
The research aims at:

- Reveal the effect of Graded aerobic effort on some lung ventilation variables (number of breathing times, means of normal breathing, ventilation).
- Reveal the effect of Graded aerobic effort on some blood variables (red and white blood cells, hemoglobine).

The researcher hypothesized the existence of statistically significant differences in blood ingredients (red and white blood cells, hemoglobine), and ventilation variables (number of breathing times, volume of breather air, ventilation), before and after doing maximum physiological and aerial effort.

The researcher used the descriptive method due to its appropriateness. The sample consisted of (11) students aging (18-21 years) representing first year of Physical Education Department- College of Basic Education/University of Mosul, and the researchers used testing and measuring as tools to collect data.

The researcher used the following statistical means:
(ratio, mathematical means, standard deviation, variance factor , t-test for two related groups).

After treating data statistically, the researcher concluded:

- Graded aerobic effort had (tangible increase) tangible effect on lung ventilation variables.
- Graded aerobic effort had tangible effect (tangible increase) in some blood ingredient variables Compared to rest time and in favor of post test.

The researcher recommended:

- The necessity of doing lab tests of candidates of the department of Physical Education to by used in the process of selection.
- Open a record for every student to keep his physiological, functional and chemical measurements to evaluate the health condition and his progress in every academic stage.
- Make a similar study with the same variables but on female students.
الأجهزة التكيف مع الأعمال البينية ولكن هذه التأثيرات تختلف بنسب متغيرة وذل تبعاً للجهد المستخدم ونظام الطاقة العام ونتيجة لما يحدث الأعمال البينية على وظائف مكونات الدم والجهاز التنفس، فقد أحدث الكثير من الباحثين بذلك وحاولوا الكشف عن وسائل تدريبية لتنمية هذه المتغيرات الفسيولوجية وهذا ما قاد الباحثين إلى استخدام متغيرات الدم والجهاز التنفس كمؤشر للحالة التدريبية ومدى تكيف الرياضي مع حمل التدريب لاسيما أن هذه الأعمال تدرس وفق أنظمة إنتاج الطاقة ومعرفة التأثيرات الفسيولوجية التي تظهر على اللاعبين، الأمر الذي يؤدي إلى الاستفادة من نتائجها في توجيه العملية التدريبية (عبد الفتاح، 2003، 126، 1)، ومن هذه البحوث والدراسات:

دراسة (الخالدي وحسن، 2009) الذي تناول دراسة مقارنة بعض متغيرات الدم بين الطالبات الرياضيات وغير الرياضيات، وكذلك دراسة (عبد الحسين وأخرون، 2005) الذي تناول بعض مكونات الدم على أساس النظام وعدم النظام على التدريب وفق أنظمة إنتاج الطاقة، ودراسة (الناجي، 2009) والتي تخصص في تأثير أحماض تدريبية متنوعة بالأجواء الحارة على تركيز بعض مكونات وأملاح الدم، ودراسة (العوادي، 2009) الذي تناول تأثير برنامج تدريبي في بعض المتغيرات الفسيولوجية لدى اللاعبين الشباب بكرة السلة، وكذلك دراسة (طه وفتحي، 2012) الذي تناول تأثير منهج تدريبي مقترح في مكونات الجسم ومتغيرات التهوية الرئوية وسرعة النفس، وهناك عدد من الباحثين قد تناول أثر الجهد الهوائي على هذه المتغيرات أذكر منها: دراسة (يوس، 2012) الذي تناول استجابة عدد من المتغيرات الوظيفية عند أداء اختبارين هوائيين، وكذلك دراسة (محمد محمود، 2007) أثر جهد هوائي في بعض المتغيرات الفسيولوجية لكلا الجنسين بأعمار (11-12) سنة، من خلال تلك الدراسات التي تناولت فيها الباحثون لاحظ بان هذه الدراسات قد تناولت هذه المكونات من نواحي عدة منها ما يتناول هذه المتغيرات من ناحية التدريب اللاهوائي أو من ناحية درجة الحرارة والبيئة أو على أساس النظام أو عدم النظام في التدريب، أو على أساس المقاربة بين الطالبات الرياضيات وغير الرياضيات، أو تحت تأثير منهج تدريبي مقترح، أو من خلال استخدام الجهد الهوائي ومتغيرات مختلفة، فمن خلال تلك الدراسات لاحظ الباحث قلة البحوث في تناول استجابة هذه المتغيرات (مكونات الدم والتهوية الرئوية) بعد أداء جهد بدائي هوائي مدرج شدة والتحرر على نسب هذه المتغيرات قبل وبعد أداء هذا الجهد وخاصة بالنسبة للعوامل المأخوذة في الدراسة، إذ يعتقد الباحث إن إجراء بحوث على الطلبة المقبولين في قسم التربوية الرياضية سوف يساعد بشكل كبير في التعرف على مستوى الإجابة الوظيفية وكيفية عملها قبل وأثناء وبعد ممارسة الطلاب للنشاط البدني على اعتبار أن اختبار الطالة الجدد يعتمد بالأخص على الاختبارات البدنية فقط، بصرف النظر عن الاختبارات المختبرية، هذا بالإضافة أنه يمكن تطبيق مثل هذه البحوث واعتمادها لمساعدتها في عملية اختيار واتناء الطلبة الجدد في أقسام
تأثر جهد هوائي

وكلات التربية الرياضية، أي استخدام الاختبارات الوظيفية جانب الاختبارات البدنية في عملية الاختيار ومن هنا جاءت أهمية البحث.

2.1 مشكلة الدراسة

إن معرفة تأثير الجهد البدني سواء أكان هذا الجهد هوائي أم غير هوائي في الأجهزة الوظيفية مهم جدًا في التعرف على المستوى الوظيفي لأجهزة الجسم لدى الطالب وخاصةً في بداية قبوله في كليات التربية الرياضية واقاماتها لكي تتحصل الأجهزة الوظيفية للطالب العتي الذي سيلقي عليها من خلال المحاضرات العملية، فلذا نلاحظ أنه عندما يقدم الطالب للقبول في كليات التربية الرياضية واقاماتها يختبر الطالب على أساس عدة من الاختبارات البدنية بصرف النظر عن وجود اختبارات متخصصة في مجالات تجربة عصر عمل الأجهزة الوظيفية التي تتأثر نتيجة الجهد البدني الواقع على الطالب، وسبب الحاجة الماسة لعمل هذه الدراسات كان هذا سبباً لكي يقوم البحث بأداء مثل هذا البحث الذي يستنده بالذات في معرفة معلومات ونتائج مهمة تساعد القائم على العملية التعليمية على الاعتماد على نتائج هذه البحوث، ومن هنا برزت مشكلة البحث.

2.1 هدف البحث:

2.1.1 الكشف عن تأثير الجهد الهوائي المتدرج الشدة في قيم بعض متغيرات النفس (عدد مرات التنفس، معدل النفس الطبيعي، النوبة الهرمية).

2.1.2 الكشف عن تأثير الجهد الهوائي المتدرج الشدة في قيم بعض مكونات الدم (خلايا الدم الحمر، خلايا الدم البيض، الهيموكوبين).

2.1.3 قدرةً وفعالية البحث:

2.1.3.1 وجدت فرق ذات دلالة إحصائية في قيم بعض متغيرات النفس قبل وبعد أداء جهد هوائي متدرج الشدة.

2.1.3.2 وجدت فرق ذات دلالة إحصائية في قيم بعض مكونات الدم قبل وبعد أداء جهد هوائي متدرج الشدة.

2.1.4 مجالات البحث:

2.1.4.1 المجال البشري: طالب قسم التربية الرياضية المرحلة الأولى في كلية التربية الأساسية/ جامعة الموصل للعام الدراسي 2012-2013.

2.1.4.2 المجال المكافئ: مختبر المفسطة في قسم التربية الرياضية كلية التربية الأساسية.

2.1.4.3 المجال النموتي: للفترة من 12/12/2012 وانتهت.

2.2 الأطر النظري والدراسات السابقة

2.2.1 الأطر النظري:

2.2.1.1 متغيرات الجهاز التنفسي:

Respiratory Rate (R.R)

يقصد بعد مرات التنفس عملية الشهيق أو الزفير التي تحدث في الدقيقة الواحدة (البسيطي، 1984، 1982) ويعتبر كل من الطالب والسامري (1981) معدل التنفس بأنه:

821
Tidal Volume (TV)

2.1.2 حجم النفس الطبيعي

عرف (عبد الفتاح وحسامين) حجم النفس بأنه حجم هواء الشخص أو الزفير في المرة الواحدة (عبد الفتاح وحسامين، 1997، 117)، في حين عرفه (Shier et al., 1997). (Shier et al., 2000).

إن مقدار حجم الهواء التنفسي الذي يدخل أو يخرج خلال دورة تنفس واحدة (464,000) المترال، يعتمد على تفاعلات المشتركة في عملية التنفس وتغير نشاط الزفير، إذ توجد علاقة ثابتة بين كمية الهواء مقندرة باللتر ووزن الجسم (زرام، 1997).

إن زيادة حجم النفس أثناء التمرين يكون من خلال زيادة نشاط العضلات المشاركة في عملية التنفس وتغير نشاط الزفير، إذ توجد علاقة ثابتة بين كمية الهواء مقندرة باللتر ووزن الجسم (زرام، 1997).

حجم هواء التنفس العادي = وزن الجسم × 0.04

إذا افترضنا أن شخصًا وزنه 70 كيلو غرام، فإن حجم الهواء في هذه الحالة سيكون:

70 × 0.04 = 2.8

Ventilation (VE)

3.1.2 التنفس الرئوية

Seeley et al., 1998.

تعني التنفس الرئوية عملية تحرك الهواء من الرئتين أو إلىهما (746، في حين يرى (مرين) أنها عملية دخول الهواء أو خروجه بين الهواء الخارجي والحويصلات الرئوية التي تسمى "التنفس الخارجي" وذلك لوجود عملية تبادل غازات أخرى تحرف بين الدم وانصه الجسم ويطلق عليها "التنفس الداخلي" (مرين، 1990، 125).

تزيد كمية التنفس الرئوية بزيادة الجهد، إذ تكون هذه الزيادة لغرف التبادل من ثنائي الأوكسيد الكربون أكثر منها للحصول على الأوكسجين على الأقل تحت تأثير الحمل البدني الاقصى.
Red Blood Cells (R.B.C)

2.1.2 خلايا الدم الحمر

هي خلايا شديدة التخصص فاقدة النواة مقعرة الوهيج مملوءة بالهيموكريبتين يبلغ قطرها حوالي 8 مايكرون وأعظم سمك لها هو 3 مايكرون ويحتوي الدم على أعداد هائلة من خلايا الدم الحمر ويختلف عددها في الذكر عما هو في الأنثى في حين يبلغ في الذكر حوالي (5.5-5) مليون خلية لكل واحد سنتمتر مكعب وفي الأنثى (4.5-5) مليون خلية لكل واحد سنتمتر مكعب، ويصل عمر الخلية الحمراء الواحد (120) يوما وينتهي بها الحال بعد انقضاب عمرها إلى الطحال والكبد (خضر، 2001، 28)، ويعتبر الكبد الرئيسي المسؤول عن خلايا الدم الحمر على الرغم من ان الطحال والعقد المفاوهة تولد في الوقت ذاته اعداداً مناسبة منها خلال الإدوار الجنيني (مايتون، وهول، 1997، 4، 5).

White Blood Cells (W.B.C)

2.1.2 خلايا الدم البيض

وهي خلايا حقيقة النواة عديمة اللون وذلك لعدم احتوايتها على خضاب الدم (الهيموكريبتين) ذات شكل كروي وكيفه أعضاء خلايا الدم الحمر بالعدد والتركيب والوظيفة حيث يتراوح عددها (1000 - 100000) خلية دم بيضاء لكل ملمتر مكعب واحد من الدم أي نسبة خالية دم بيضاء واحدة لكل (700) خلية دم حمراء وتعد خلايا الدم البيض معبراً تسلكي لتصالى الأمكان التي تمارس فيها نشاطها في النسيج الضام وتعتبر خلايا الدم البيض خط الدفاع الأول الذي يعتمد عليه الجسم ضد غزو الكائنات الحية الدقيقة، وخلايا الدم البيض إيقاع يوم يذداد في أخذ النهر وهي تتغير من ساعة إلى ساعة كاستجابة للعديد من المثيرات (المختار والراوي، 2000، 147).

Hymoglobin (H.B)

2.1.2 الهيموكريبتين

وهي "إحدى مركبات الدم الحمراء والتي تكون الجزء الأكبر من التركيب الخلوي للدم إذ يشكل (90%) من المواد المكونة لخلايا الدم الحمراء المادة التي تكتسب الدم لوحة الأحمر (صالح ومحمد، 1983، 449)، ولا يسمى أيضاً (حديد الدم) ولي يعزى اكتساب الدم اللون الأحمر نظراً لاحتويه على عنصر الحديد، وهو مركب بروتيني يتكون من بروتين يسمى جليوبين (Globin) واربعة مجموعات تحتوي على عنصر الحديد تسمى هيم (Heme) ويعتبر الهيموكريبتين عنصراً مهمًا في نقل الأكسجين من الهوياحلات الرئوية إلى أنسجة الجسم المختلفة، حيث تحت كل ذرة حديد فيه جزيء الأوكسجين، إذ تبلغ المعدلات الطبيعية للهيموكريبتين لدى الذكور البالغين (14-18) مجم لكل (100) مليلتر من الدم أي (140-180) مجم في اللتر، أما لدى النساء فيبلغ
مستواه 12-16 مجم لكل 100 ملilitر من الدم، والمعروف أن تركيز الهيموكلوبين يتاثر بحجم الدم، حيث يزداد تركزه مع فقدان السوائل في الجسم.

(الزاغ، 2009، 320، 530)

2- الدراسات السابقة

2.1 دراسة (الكلي، 2009) بعنوان:

"تأثير الجهد الهوائي بتغير الرطوبة النسبية في بعض المتغيرات الوظيفية والبايكيميكية لدى لاعبي كرة القدم"

هدفت هذه الدراسة إلى:
• الكشف عن تأثير الجهد الهوائي في ظرف الرطوبة النسبية (الطبيعية) في بعض المتغيرات الوظيفية والبايكيميكية لدى لاعبي كرة القدم.
• الكشف عن تأثير الجهد الهوائي في ظرف الرطوبة النسبية (العاليا) في بعض المتغيرات الوظيفية والبايكيميكية لدى لاعبي كرة القدم.

استخدم الباحث المنهج التجريبي لملاعمة وطبيعة البحث، وتم اختيار العينة بطريقة عمدية والتي اشتملت على (4) لاعبين يمثلون فريق الصعود للفترة الشباب (18-19) سنة.

استخدم البحث الاستبيان والاختبار والقياس كوسائل لجمع بيانات، واعتمد الباحث اختياراً مقتناً للجهد الهوائي حتى التعب، أما القياسات فقد اشتملت على قياس (الطول والوزن)، وكذلك بعض المتغيرات الوظيفية وتضمنت (عدد مرات التنفس، ضغط الدم الانقباضي, ضغط الدم الانبساطي, النبض)، وقياس بعض المتغيرات البايكيميكية وتضمنت نسبة السكر (Sucar)، (Ca²⁺) – البوتاسيوم (Na⁺)

(ملاحظة: (Ca²⁺) – البوتاسيوم (Na⁺)

ولغرض تحقيق أهداف البحث قام البحث بإجراء اختبار الجهد الهوائي على أفراد عينة البحث لمدة من (21-31) 2009.

استخدم البحوث الوسائل الإحصائية الآتية:
• الوسط الحسابي، والانحراف المعياري، والنسبة المنوية لمعامل الاختلاف،
• اختبار (t) لعينتين مترابطتين، واختبار (f) لعينتين مستقلتين، ومعادلة التغيير المطلق، ومعادلة التغيير النسبي.

وفي ضوء عرض النتائج ومناقشتها تم التوصل إلى الاستنتاجات الآتية: أحدث الجهد الهوائي في ظرف الرطوبة الطبيعية والعالمة ما يتأتي:
• ارتفاعاً ملحوظاً في تركيز بعض إملاح الدم (البوتاسيوم، والصوديوم) ولصالح الاختيار البعدي.
تأثير جهد هوايى...

- ارتفاعاً ملحوظاً لعدد من المتغيرات الوظيفية (معدل نبض القلب، ومعدل سرعة التنفس، وضغط الدم الانتقاضي، وضغط النبض، ومعدل الضغط الشرياني، ودرجة حرارة مركز الجسم)، وانخفاضاً بسيطاً في من حذف ضغط الدم الأدنى والصحة البدنية والصحة البدنية.
- ارتفاعاً بسيطاً في نسبة تركيز خلايا الدم الحمر والهيموكلوبين ولصالح الاختيار البدني.
- انخفاضاً ملحوظاً في نسبة سكر الدم ولصالح الاختيار البدني.

٢.٢ اوجه انتشاله والاختلاف للدراسة السابقة مع الدراسة الحالية:

- استخدم الباحث اختبار الجهد الهوايى في الدراسة المشابهة وهذا ما تطرق إليه البحث الحالي.

٢.٢.٢ استخدم الباحث في الدراسة السابقة (الروطانية التنفسية والروطانية النفسية العالمية) وقارن بينهما، وهذا ما تطرق إليه الباحث في تجربته إذ كانت تجربة البحث في ظروف الروطانية النفسية والروطانية الفيضانية، وكانت درجة الروطانية النفسية مقارنة إلى حد ما مع بحثنا الحالي.

- استخدم الباحث في الدراسة السابقة المتغيرات الوظيفية والبائيوميهانيمية، فقد تشابهت عدد من المتغيرات المستخدمة في البحث الحالي مع المتغيرات المستخدمة في الدراسة السابقة.

- تشابه استخدام العينة في الباحثين من ناحية اعمارهم، إذ كانت العينة المستخدمة في هذا البحث في صدر (١٨-٢١) سنة، فيما كانت العينة في الدراسة السابقة تتراوح اعمارهم (١٨-١٩) سنة.

- اختلف الدراسة الحالية عن الدراسة السابقة: فان الدراسة السابقة كان المثير المستقل فيه، هو استخدام الجهد الهوايى يتغير الرطوبة النفسية بينما في بحثنا الحالي فكان المتغير المستقل هو الجهد الهوايى.

٢.٣ منهج البحث:

- استخدم الباحث منهج الوصف للاعلامه وطبيعة البحث.

٢.٣ مجتمع البحث وعينته:

اشتمل مجتمع البحث على طلاب المرحلة الأولى في كلية التربية الأساسية- قسم التربية الرياضية، أما عينة البحث فقد تم اختيارها بطريقة عشوائية وعددهم (١١) طالباً، والجدول رقم (١) يبين مواصفات عينة البحث.
يتتبن من الجدول أعلاه تجانس أفراد العينة في المتغيرات (الطول، والوزن، وال العمر)، إذ كلما كانت قيمة معامل الانتشار قليلة أي أقل من (30%) كان التجانس بين أفراد المجموعة كبيراً في متغيرات الطول والوزن والعمر.

2.2 أدوات البحث والأجهزة المستخدمة:

استخدم الباحث الأدوات والأجهزة المختارة التالية:

- جهاز السير المتحرك (EC-T220 CATEYE 2004) كهربائي نوع (Treadmill) ياباني المنشأ.
- جهاز سبايروميترب لقياس متغيرات الثروية الرئوية.
- جهاز لقياس الوزن والطول نوع (Detecto, Model 758 C) الأمريكي المنشأ عدد (1).
- جهاز قياس متغيرات الدم خاص بفحص صورة الدم كاملة (Compleat Blood).
- جهاز ماصة متغيرة (Maycro paipet)
- جهاز الطرد المركزي (Center fuch) الماني الصنع، فصل عينة الدم.
- سريرية طبية عدد (25).
- قطن طبي مع ديتول للتعقيم.
- بلاستر تركي الصنع.
- جهاز قياس درجة الحرارة والرطوبة للمحيط.
- لاصق جروح تركي الصنع.
3.4 وسائل جمع البيانات:
استخدم الباحث القياس والختيار كوسائل لجمع البيانات:

1.4.3 وصف الاختبارات والقياسات للمتغيرات:

1.4.3.1 قياس طول الجسم (سم) ووزنه (كجم):
تم قياس أطول وأوزان أفراد عينة البحث باستخدام جهاز (قياس الطول والعمر) نوع (Detecto)، إذ يقف المختبر على الجهاز حافه القدمين ويقوم أحد أفراد فريق العمل المساعد بعملية القياس بملامسة اللوحة المعدنية للرأس المختبر، وبعد التثبت يقرأ المؤشر الذي يمثل طول المختبر والسنتيمتر، وقياس الوزن يقرأ وزن المختبر يثبت العداد الإلكتروني على الرقم الممثل لوزن المختبر بالكيلوغرام.

2.4.3 قياس التغيرات البيوبكيميكية:

تم تقدير متغيرات الدم (C.B.P) (RBC, WBC, HB) عن طريق جهاز (check) على أساس (5 مايكروليتر) ثم يعمل على الحصول على النتائج بواسطة محفل خاص تعمل على تحليل مكونات الدم من خلال تحليق كريات الدم الحمر البيض كل على حدة وتتم القراءة عن طريق شاشة مع الجهاز (LCD) لمس، أو تخرج النتيجة مطبوعة على شريط ورقي.

تمت معايرة الجهاز قبل بدء العمل بواسطة محلول خاص يسمى محلول المعايرة (blank) لتصغير الجهاز. بعد سحب الدم وقراءة النتائج يتم غسل المحفنة الخاصة بسحب الدم بواسطة محلول غسل خاص للتتأكد من خلوها من بقايا الدم للقياس السابق.

وتتم تلك الإجراءات بمحترف المصلحة في كلية التربية الأساسية، وذلك بمساعدة متخصص بتحليل الدم (*) وذلك بجهاز معه هذا الغرض.

3.4.1 قياس متغيرات التنفس (حجم النفس الطبيعي وعدد مرات التنفس والتهوية الرئوية):

يضع المختبر أنبوبة القياس الإسطوانية في الفم وهي خاصة بجهاز الأسبيروميتر، ويوضع أيضا سدادة على أنف المختبر لمنع التنفس من الأنف. يبدأ المختبر بعملية التنفس الطبيعي التي تحتوي على التنفس الفعال الذي يعتبر من قبل جهاز الأسبيروميتر على نظام التنفس الرئوي معبرة عنها بحجم النفس الطبيعي وعدد مرات التنفس ويتم تسجيلها مباشرة على الحاسوب مع رسم المنحنى البياني للمتغيرات. يراعي عند إجراء الاختبار في ظرف الراحة مدة محدودة للتنفس قبل بدء القياس لتتجاوز الظروف النفسية المصاحب للبداية الاختبار ولكي يصل المختبر إلى الإيقاع الطبيعي لعمليتي الشهق والزفير.

* السيد أحمد سعدي، مختبر العلوم، كلية التربية الأساسية.
3- اختبار الجهد البدئي (اختبار بروس) (Bruce Test):

- هدف الاختبار: يهدف الاختبار إلى الوصول بالمختبر إلى (VO2max) ويؤدي هذا الجهد على جهاز السير المتحرك (Treadmill) وهو جهد يعتمد على التدرج بالانحدار يقيس (VO2max) بالطريقة العملية).

- الاذاعات: جهاز السير المتحرك (Treadmill) كهربائي ذو معيار للسرعة والانحدار.
- التهيئة للاختبار: يقوم المختبر بإجراء عملية إحماء لفترة (5 دقائق) وذلك بالصعود على جهاز السير المتحرك والقيام بالسير أو الهروب السريع في بسرعة (6 كم/ ساعة) (وانحدار 4%) يمنح بعدها فترة راحة (5 دقائق).
- مواصفات الاختبار: يكون الاختبار من سبعة مراحل، لكل مرحلة سرعة وانحدار ويستغرق اداء كل مرحلة ثلاث دقائق.

الجدول رقم (2) مراحل اختبار بروس (Bruce Test)

<table>
<thead>
<tr>
<th>السرعة (كم/ساعة)</th>
<th>الانحدار</th>
<th>الوقت الكلي (دق)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.74</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>4.02</td>
<td>12</td>
<td>6.3</td>
</tr>
<tr>
<td>5.07</td>
<td>14</td>
<td>9.6</td>
</tr>
<tr>
<td>6.76</td>
<td>16</td>
<td>12.9</td>
</tr>
<tr>
<td>8.05</td>
<td>18</td>
<td>15.12</td>
</tr>
<tr>
<td>8.8</td>
<td>20</td>
<td>18.15</td>
</tr>
<tr>
<td>9.7</td>
<td>22</td>
<td>21.18</td>
</tr>
</tbody>
</table>

(Adams, 2002, 255)

5-3 التجربة الاستطلاعية:

قام الباحث وبمساعدة فريق العمل المساعد (4)، بإجراء التجربة الاستطلاعية في يوم الأحد الموافق (2/12/2012) على عينة البحث الأساسية المكونة من (11) طالباً وتم الاختيار على

- ضم فريق العمل المساعد كلاً من السادة المدرجة أسفلهم في ادعت:
 - يزيد عبد الرؤف الحمو، سلالة التدريب الرياضي. كلية التربية الأساسية. قسم التربية الرياضية.
 - المدرس شادي جاسم كوكان، طالبة كلية التربية التربية الأساسية. قسم التربية الرياضية.
 - السيد أحمد عبد الله، مساعد في فريق الاتصال. كلية التربية الأساسية. جامعة الموصل.
 - السيد قادي محمد شتة، ماجستير تربية رياضية. كلية التربية الأساسية. كلية التربية الأساسية.

828
تأثير جهد هواشي...

جهاز السير المتحرك (Treadmill) باستخدام اختبار بروس للجهد اليدوي، وكان الهدف من التجربة هو:

- تحقيق التعدد على جهاز السير المتحرك والتتأكد من صلاحية الجهاز.
- التأكد من مدى صلاحية الأجهزة والأدوات المستخدمة (الإجهزة الخاصة بعملية سحب وتحليل الدم) في تطبيق التجربة.
- التعرف على المكالمات وال-stringوات، الممكن ظهرها ومحاولة تقليلها كافية.
- تعريف فريق العمل المساعد بالواجبات المكلفين بها وتسليطها ووقت تنفيذها عند تطبيق التجربة لتلافي حدوث الأخطاء أثناء التجربة.

1-3 التجربة النهائية:

لغرض التحقق من أهداف البحث قام الباحث بإجراء التجربة النهائية اختبار الجهد اليدوي (اختبار بروس) على جميع أفراد عينة البحث بتاريخ (٤/٢/٢٠٢١).

وقد تم إجراء التجربة على وفق التسلسل الآتي:

- يدخل الرياضي إلى غرفة الاختبار بالسروال الرياضي الجاف الخاص بالفحص ويتقدم للقياسات القبلية من وضع الجلوس وكما يأتي:

 - قياس متبغات التهوية الرئوية بجهاز (Sperometer).
 - سحب عينة من الدم.
 - بعدها يقوم الطالب بإبقاء لمدة خمس دقائق.
 - إعطاء مدة راحة بين فترة الإصدار والاختبار (5 دقائق) وهي ضمن مواصفات الاختبار.
 - بعدها يؤدي الرياضي اختبار الجهد اليدوي (ساق الذكر) مع تحفيز المختبر لـالأداء بأقصى جهد ولحد التعب.

- عند الانتهاء من الاختبار يجلس المختبر على كرسي أمام جهاز السير المتحرك لغرض سحب عينة من الدم، وفي نفس الوقت توضع الأنبوبة الخاصة بـجهاز (Sperometer) لقراءة المتغيرات.

2-2 النقاط التي تم مراعاتها في التجربة النهائية:

- وللإسهام ضبط تجربة البحث قام الباحث بمراعاة النقاط الآتية:
 - دخول أفراد العينة إلى غرفة الاختبار قبل أداء الجهد بربع ساعة لغرض التكيف على أجواء البيئة في غرفة الاختبار.
 - تم مراعاة درجة حرارة ورطوبة الغرفة، إذ كانت درجة الحرارة تتراوح (٢١-٣٢ درجة مئوية)، أما درجة الرطوبة فقد تراوحت (٣٥-٤٠%).
 - كان فريق العمل هو نفسه لجميع القياسات الخاصة بالدم ومتغيرات التهوية الرئوية.
8.3 الوسائط الإحصائية:
1. الوسط الحسابي.
2. الانحراف المعياري.
3. اختبار (T) للعينات المرتبطة.

وقد تم إدخال البيانات باستخدام البرنامج Excel (ومعاليتها باستخدام الحزمة الإحصائية SPSS).

4 عرض النتائج ومناقشتها
4.1 عرض ومناقشة نتائج بعض متغيرات التنفس قبل وبعد اداء جهد هواوي متدرج الشدة

الجدول رقم (٣) الأوساط الحسابية والانحرافات المعيارية لبعض متغيرات التنفس قبل وبعد اداء جهد هواوي متدرج الشدة

<table>
<thead>
<tr>
<th>درجة المنوية</th>
<th>قيمة (ت) المسوية</th>
<th>الانحراف المعياري</th>
<th>الوسط الحسابي</th>
<th>الامام الإحصائية</th>
</tr>
</thead>
<tbody>
<tr>
<td>*٥،٠٠٠</td>
<td>٩.٥٩٨</td>
<td>٢.٣٦٨</td>
<td>١٤.٣١٧</td>
<td>عدد مرات التنفس</td>
</tr>
<tr>
<td>*٥،٠٠٠</td>
<td>٩.٥٣</td>
<td>٣.٤٢٧</td>
<td>٣٩.٨٦٨</td>
<td>RR</td>
</tr>
<tr>
<td>*٥،٠٠٠</td>
<td>٧.٤٢٣</td>
<td>٠.٨٢</td>
<td>٠.٦٢٧</td>
<td>حجم النفس الطبيعي</td>
</tr>
<tr>
<td>*٥،٠٠٠</td>
<td>١٥.٢٢٥</td>
<td>١.٩٩٩</td>
<td>١٧.٩٣٨</td>
<td>RR</td>
</tr>
<tr>
<td>*٥،٠٠٠</td>
<td>٦.٤٥٨</td>
<td>٨.٩٤٠</td>
<td>٧٨.٠١٩</td>
<td>التهوية الرئوية</td>
</tr>
<tr>
<td>*٥،٠٠٠</td>
<td>١٥.٠١٩</td>
<td>٧٧.٠١٩</td>
<td>٧٧.٠١٩</td>
<td>QT / دقيقة</td>
</tr>
</tbody>
</table>

- معنوي عند نسبة خطأ (٥،٠٠٠) أمام درجة حرارة (١٠٠)، وقيمة (٤) الجدولية= (٣،٢٣).

يتبين من الجدول رقم (٣) ما يأتي:
- وجود فروق معنوية عند نسبة خطأ (٥،٠٠٠) بين القياس القلب والبعدي في عدد مرات التنفس.
- حيث كانت درجة المعنوية لهذا المتغير هي (٥،٠٠٠).
- وجود فروق معنوية عند نسبة خطأ (٥،٠٠٠) بين القياس القلب والبعدي في حجم النفس الطبيعي. حيث كانت درجة المعنوية لهذا المتغير هي (٥،٠٠٠).
تأثير جهود هوايي...

• وجود فروق معنوية عند نسبة خطا (0.05) بين القياس القبلي والبعدي في متغير التهوية الرئوية، حيث كانت درجة المعنى لهذا المتغير هي (0.000).

ويرى الباحث أن سبب زيادة في متغيرات التهوية الرئوية يعود إلى الجهود البندية (الجهد الهوايي) الذي أداره أفراد العينة، إذ إنه "عند القيام بجهود رياضية عام فإن سرعة التنفس تزداد ولكن هذه الزيادة تختلف من فرد إلى آخر وكذلك بالنسبة للفرد الواحد تختلف حسب هذا المجهود ومتنه" (مطهود، 1991، 12). كما ويعزو الباحث هذه التغييرات إلى عدة عوامل كيميائية وعصبية، إذ يشير (البشتاوي وإسماعيل، 2006) بأنه ومن العوامل الكيميائية التي تؤثر على عملية التنفس؛ هناك محسنة كيميائية بسبب غاز ثاني أوكسيد الكربون إذا كانت كمية هذا الغاز طبيعية فإن عملية التنفس تكون طبيعية ومنتظمة، أما إذا ازدادت كمية ثاني أكسيد الكربون في الدم فان ذلك يؤثر على المركز التنفسي (البشتاوي وإسماعيل، 2006، 13).

وهذا ما أكده على منتدى (الدوري والأميين، 1985) أنه من العوامل الكيميائية التي تؤثر في عملية التنفس هي زيادة (CO2)، "إذا ازدادت كمية غاز (CO2) في الدم فإن ذلك يؤثر على المركز التنفسي بمحرم كيميائي فيسرع التنفس حتى يتم طرد كمية غاز (CO2) الزائد ويتعمل تفاعل الدم إلى حالته الطبيعية" (الدوري والأميين، 1985، 132)، وكذلك نقص (O2) وزيادة حموضة الدم (pH) حيث تودي زيادة تركيز أيونات الهيدروجين (H+) إلى زيادة نشاط مركز التنفس في الدم مما يعكس على زيادة التنفس الرئوي (البشتاوي وإسماعيل، 2006، 297).

وأشار (مذكور، 2008) "أن حدوث أي تغير كيميائي للدم يعمل على اضطراب المراكز التنفسية العصبية المركزية، ويؤثر وبالتالي على عملية التنفس ومهم هذا التأثير بطرق:

• أحداثا مباشرة على المراكز العصبية التنفسية والثانية غير مباشرة أي انعكاس عن طريق المستقبلات الموجودة على أجزاء الشرايين الأبهر والسرياني العام، وأهم العوامل المؤثرة على التنفس هي درجة الحموضة (pH) ومستوى من الأوكسجين وثاني أكسيد الكربون (مذكور، 2008، 69).

أما العوامل العصبية فقد ذكر (البشتاوي وإسماعيل، 2006، 210) إلى أن هناك عدة عوامل عصبية تؤثر في سرعة التنفس منها:

• إشارات عصبية تصل إلى المركز المنظم في قشرة المخ نتيجة أفعال متعكسة نتيجة الإنفعال.

• إشارات تصل إلى المركز المنظم وذلك عند ارتفاع درجة حرارة الجسم أثناء المجهود الرياضي يؤدي إلى زيادة سرعة ومفعول التنفس.

• إشارات عصبية تصل إلى مركز المنظم في العضلات المتلقسة تؤدي إلى زيادة عمك التنفس وسرعته (عند تحريك العضلات بدون القيام بجهود رياضي يزيد سرعة التنفس) (البشتاوي وإسماعيل، 2006، 118-119).
كما وذكر (سعد الدين، 2000) بأنه هناك عدة تأثيرات فيزيولوجية تصاحب الجهد البدني، وتختلف باختلاف نوع النشاط الرياضي ونظام الطاقة المستخدم، إذ أن الجهد البدني يترك أثره الواضح على الجهاز التنفسي، ويتذكر بأن هذه التأثيرات هي: زيادة سرعة وعمق التنفس، مما يؤدي إلى زيادة معدل التنفس الربوية. زيادة كبيرة تتراوح ما بين 150-200 لتر هواء أو أكثر في الدقيقة، وكذلك زيادة النشاط القلبي الوعائي مما يؤدي إلى ارتفاع معدل التنفس الربوية وكذلك زيادة كمية الأوكسيجين المستخلصة بالرئتين في الدقيقة.

(سعد الدين، 2000، 116)

وقد ماكده (غايتون) أن الجهد البدني يؤثر على عدد مرات النفس في الدقيقة فضلاً على زيادة حجم الهواء المتناقل من خلال زيادة عمق التنفس وهذا ينتج نوع النشاط المؤدي.

(Guyton, 1996, 1289)

٤- عرض ومناقشة نتائج بعض مكونات الدم قبل وبعد اداء جهد هوائي متدرج الشدة

الجدول رقم (۴) الأعوام الحسابية والانحرافات المعيارية لبعض مكونات الدم قبل وبعد الجهد الهوائي متدرج الشدة

<table>
<thead>
<tr>
<th>الذرة المعنوية</th>
<th>قيمة (ت) المعيارية</th>
<th>الاعبражات المعيارية</th>
<th>الوسط الحسابي</th>
<th>المعلامة الإحصائية</th>
<th>التغيرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.613*</td>
<td>۳.۰۳۴</td>
<td>۴.۴۶۹</td>
<td>۳.۵۰۰</td>
<td>خلايا الدم العوامل</td>
<td>k/ul</td>
</tr>
<tr>
<td>0.603</td>
<td>۴.۱۰۵</td>
<td>۵.۵۰۰</td>
<td>۴.۳۳۲</td>
<td>خلايا الدم اليسر</td>
<td>k/ul</td>
</tr>
<tr>
<td>0.703</td>
<td>۲.۸۲۴</td>
<td>۲.۷۶۴</td>
<td>۲.۷۱۴</td>
<td>الهيماتوكريت</td>
<td>g/dl</td>
</tr>
<tr>
<td>0.803</td>
<td>۲.۰۸۴</td>
<td>۲.۰۵۰</td>
<td>۲.۰۷۰</td>
<td>خلايا الدم العوامل</td>
<td>k/ul</td>
</tr>
<tr>
<td>0.803</td>
<td>۲.۰۰۰</td>
<td>۲.۰۰۰</td>
<td>۲.۰۰۰</td>
<td>خلايا الدم اليسر</td>
<td>k/ul</td>
</tr>
<tr>
<td>0.703</td>
<td>۲.۸۲۴</td>
<td>۲.۸۰۰</td>
<td>۲.۸۰۰</td>
<td>الهيماتوكريت</td>
<td>g/dl</td>
</tr>
</tbody>
</table>

* معنوي عند نسبة خطا (٠.٠٥) أمام درجة حرية (١٠) وقيمة (٤) الجدولية (٠.٢٣٣).

يتبين من الجدول رقم (٤) ما يأتي:

- وجود فروق معنوية عند نسبة خطا (٠.٠٥) بين القياس اللفي والبعدي في نسبة خلايا الدم الحمر. حيث كانت درجة المعوية لهذا المتغير هي (٠.١٣).
- وجود فروق معنوية عند نسبة خطا (٠.٠٥) بين القياس اللفي والبعدي في نسبة خلايا الدم البيض. حيث كانت درجة المعوية لهذا المتغير هي (٠.٠٠٠).
• وجود فروق معنوية عند نسبة خطاً (0.05) بين القياس القليل والبعدي في نسبة الهيموكولبيين.

 حيث كانت درجة المنعوية لهذا المتغير هي (0.017).

 وهو يعزى الباحث السبب في زيادة تركيز كميات الدم (خلايا الدم الحمراء، وكلاهما الدم البيض، الهيموكولبيين) إلى الجهود البيني الهوائي الذي يبذلها أفراد العينية، وتفوق هذه النتائج مع الدراسة التي أجراها (Mackinnol.L et.al, 2002). إذ أشار في نتائج دراسته إلى أن ممارسة الرياضة الأوكساندينية تؤدي إلى زيادة في عدد خلايا الدم الحمراء، وكلاهما في نسبة الهيموكولبيين وهذا ما يتفق مع الدراسة الحالية (Mackinnol. L et al, 2003).

 وهذا ما أكدته (عبد الحميد 1985) "إن كريات الدم الحمراء ونسبة تركيز الهيموكولبيين وبورونتين البلازما تزداد مع زيادة المجهود العضلي طبقًا لشدة ونوع المثير (عبد الحميد، 1985، 164).

 ويشير كل من (علاوي وعبد الفتاح، 2002) في هذا الصدد "أن التدريب الرياضي يؤدي إلى حدوث تغيرات في الدم كما يحدث بالنسبة لأي جهاز من أجهزة الجسم، وهذه التغييرات نوعان منها ما هو مؤقت أي تغيرات تحدث بصورة مؤقتة كاستجابة لأدء النشاط البدني ثم يعود الدم إلى حالته في وقت الراحة، ومنها ما يتميز بالاستمرارية نسبًا (علاوي وعبد الفتاح، 2002، 168).

 ويشير (السيد، 1991) أنه في أثناء النشاط البيني ونتيجة لحاجة الجسم للدم سيقوم الجسم من استخدام المعخزون من الدم من نخاع العظام والكبد والطحال إلى الدورة الدموية فزيد بالتالي من كمية الدم وذلك لزيادة احتياج الأنسجة العضلية إلى المزيد من الأوكسجين مع زيادة الجهد البدني (السيد، 1991، 88).

 ويعزو الباحث زيادة تركيز هذه المتغيرات إلى أن خلال استمرار الفرد بالجهد البيني سوف يفقد الجسم جزءًا من سائل الجسم عن طريق التعرق مما سيزيد من تركيز كريات الدم الحمراء والبيضاء الهيموكولبيين، وهذا ما أشار إليه كلا من (علاوي وعبد الفتاح، 2002) أنه خلال النشاط البيني يفقد الدم جزءًا كبيرًا من ماء البلازما نتيجة للتعرق أو نتيجة لزيادة ضغط الدم في الشعيرات الدموية مما يؤدي إلى دفع ماء البلازما إلى الأنسجة العضلية، والتي تؤدي إلى ظاهرة (انفاظ العضلة)، وهذا النقص في ماء البلازما في الدم سيؤدي إلى زيادة تركيز الخلايا في الدم وهذا كله نتيجة للتغيرات المؤقتة التي تحدث في الدم نتيجة ممارسة النشاط الرياضي (علاوي وعبد الفتاح، 2002، 170).
5 الاستنتاجات والتوصيات:

1. الاستنتاجات:

• كان للجهد الذهني أثر واضح في إحداث زيادة ملحوظة في بعض متغيرات التنفس.
• كان للجهد الذهني أثر واضح في إحداث زيادة ملحوظة في بعض متغيرات مكونات الدم.

2. التوصيات:

• ضرورة إجراء فحوصات مخبرية للمتقدمين لاقسام وكياليات التربية الرياضية للاستفادة منها في عملية الانتقاء.
• تخصيص سجل لكل طالب تسجل فيه جميع القياسات البدنية والوظيفية والكيميائية للياقة وخصائص الحالة الصحية ومستوى التقدم الحاصل لدى الطالب، لكل مرحلة دراسية.
• إجراء دراسة مشابهة وبنفس المتغيرات ولكن على الطلاب.

المصادر العربية والاجنبية:

5. الخالدي، محمد جاسم وحسن، علي مهدي (2009): دراسة مقارنة بعض متغيرات الدم بين الطالبات الرياضيات وغير الرياضيات، بحث منشور في مجلة علوم التربية الرياضية، العدد الثاني، المجلد الثاني، العراق.
تأثر جهد هوائي

10. السيد، عبد العظيم عبد الحميد (1991): تأثير عدو 400 متر على بعض المتغيرات الفسيولوجية ومكونات الدم لدى المدائن، مجلة نظريات وتطبيقات، العدد (1)، تصدرها دورياً كلية التربية الرياضية للبنين بالإسكندرية، مصر.

13. طه، أحمد عبد الغني وفتحي، كرمى أحمد (2012): اثر برنامج تدريبي مقتصر في مكونات الجسم ومتغيرات التهوية الرئوية وسرعة التغلب، بحث منشور في مجلة الرياضيين للعلوم الرياضية، العدد (18)، المجلد (58)، العراق.

