Study Of Histopathological Effect Of Staphylococcus aureus In Female Albino Mice

Summary

This experiment was designed to study histopathological changes in internal organs: liver, spleen, heart, lung, kidney, intestine, stomach, pancreas, ovary, uterus, and oviduct of white female mice after infectable with Staphylococcus aureus dose 1×10^6. Thirty white female mice aged from (one month-two months), and weighted from (25-30) grams, and this study was worked in Pathology department/college of Veterinary Medicine/Baghdad University/. The mice were randomly divided into 6 equal groups. Group 1 injected intra mammary gland with 1×10^6 S. aureus & killed after 24 hr. Group 2 injected intra mammary with 1×10^6 S. aureus & killed after 48 hr. Group 3 injected intra mammary with 1×10^6. S. aureus & killed after 72 hr. Group 4 injected intra mammary with 1×10^6 S. aureus & killed after one week. Group 5 injected intra mammary with 1×10^6. S. aureus & killed after two weeks. Group 6 injected with normal saline along the period of experiment and considered as control group.

The histopathological findings for liver, kidney, spleen, stomach, intestine, pancreas, ovary, uterus, mammary gland and oviduct showed infiltration of mononuclear cell with the liver parenchyma & portal area and pancreas interstitial tissue of the kidney with perivascular lymphocytic cuffing & mild degeneration changes represented by acute cellular swelling of hepatocytes and epithelial cell lining. The cortical renal tubules. In addition to severe congestion & dilatation of central vein and sinusoid. In addition to coagulation material in the in the lumen and small abscess in the parenchyma & thrombus. Necrosis of the hepatocyte. Spleen showed lymphoid hyperplasia of white pulp with severe congestion of blood vessels with infiltration of neutrophil in the blood sinus and proliferation of megakaryocyte. Lung showed edema with congestion of blood vessels & haemorrhage and infiltration of mononuclear cell in the alveoli wall and thickening of the alveoli septa. Heart showed severe congestion with heamorrhage & infiltration of poly morphonuclear cells (PMN' S) between muscle fibers and losse of muscle straight. Intestine & stomach showed sloughing of epithelial lining the mucosal layer with congestion of blood vessels & infiltration of (PMNS) diagnostic as chronic suppurative enteritis and gastritis. Ovary showed congestion of blood vessels with tiny aggregated abscess consist of dead and live neutrophil & tissue debris diagnosis as oophilitis. Uterus showed congestion of blood vessels with infiltration of neutrophil in wall of uterus & proliferation of endometritis layer diagnostic as endometrosis. Oviduct showed congestion of blood vessels with infiltration of neutrophil in the epithelial lining & proliferation of epithelial lead to stenosis. Mammary gland showed congestion of blood vessels, with infiltration of neutrophil between smooth muscle fiber & present of portentous material pink cooler in the lumen.

Summarized

This study aimed to study the effects of Staphylococcus aureus on the internal organs of female albino mice after infectable with dose 1×10^6. Thirty female albino mice aged from (one month-two months), and weighted from (25-30) grams, were divided into 6 groups. Group 1 injected intra mammary gland with 1×10^6 S. aureus & killed after 24 hr. Group 2 injected intra mammary with 1×10^6 S. aureus & killed after 48 hr. Group 3 injected intra mammary with 1×10^6. S. aureus & killed after 72 hr. Group 4 injected intra mammary with 1×10^6 S. aureus & killed after one week. Group 5 injected intra mammary with 1×10^6. S. aureus & killed after two weeks. Group 6 injected with normal saline along the period of experiment and considered as control group.

The histopathological findings for liver, kidney, spleen, stomach, intestine, pancreas, ovary, uterus, mammary gland and oviduct showed infiltration of mononuclear cell with liver parenchyma & portal area and pancreas interstitial tissue of the kidney with perivascular lymphocytic cuffing & mild degeneration changes represented by acute cellular swelling of hepatocytes and epithelial cell lining. The cortical renal tubules. In addition to severe congestion & dilatation of central vein and sinusoid. In addition to coagulation material in the in the lumen and small abscess in the parenchyma & thrombus. Necrosis of the hepatocyte. Spleen showed lymphoid hyperplasia of white pulp with severe congestion of blood vessels with infiltration of neutrophil in the blood sinus and proliferation of megakaryocyte. Lung showed edema with congestion of blood vessels & haemorrhage and infiltration of mononuclear cell in the alveoli wall and thickening of the alveoli septa. Heart showed severe congestion with heamorrhage & infiltration of poly morphonuclear cells (PMN' S) between muscle fibers and losse of muscle straight. Intestine & stomach showed sloughing of epithelial lining the mucosal layer with congestion of blood vessels & infiltration of (PMNS) diagnostic as chronic suppurative enteritis and gastritis. Ovary showed congestion of blood vessels with tiny aggregated abscess consist of dead and live neutrophil & tissue debris diagnosis as oophilitis. Uterus showed congestion of blood vessels with infiltration of neutrophil in wall of uterus & proliferation of endometritis layer diagnostic as endometrosis. Oviduct showed congestion of blood vessels with infiltration of neutrophil in the epithelial lining & proliferation of epithelial lead to stenosis. Mammary gland showed congestion of blood vessels, with infiltration of neutrophil between smooth muscle fiber & present of portentous material pink cooler in the lumen.

Zainab.R.Z; Salema.L.H; Hana.A.K.
Zoonotic diseases Department/Pathology and Poultry Department/Collage of Veterinary Medicin/ Baghdad University.
Introduction:

Staphylococcus aureus was discovered in Aberdeen, Scotland in 1880 by the surgeon Sir Alexander Ogston in pus from surgical abscesses (1). About 20% of the population is long-term carriers of *S. aureus*, each year, some 500,000 patients in American hospitals contract a staphylococcal infection (2).

S. aureus is a facultative anaerobic, Gram-positive coccus, and is the most common cause of staph infections. It is frequently part of the skin flora found in the nose and on skin. The carotenoid pigment staphyloxanthin is responsible for its characteristic golden color, which may be seen in colonies of the organism. This pigment acts as a virulence factor with an antioxidant action that helps the microbe evade death by reactive oxygen species used by the host immune system. Staphylococci which lack the pigment are more easily killed by host defenses.

S. aureus can cause a range of illnesses from minor skin infections, such as pimples, impetigo, boils (furuncles), cellulitis, folliculitis, carbuncles, scalded skin syndrome, and abscesses, to life-threatening diseases such as pneumonia, meningitis, osteomyelitis, endocarditis, toxic shock syndrome (3).

S. aureus is capable of secreting several exotoxins, which can be categorized into three groups. Many of these toxins are associated with specific diseases (4). Staphylococcal toxins that act on cell membranes include alpha toxin, beta toxin, delta toxin, and several bicomponent toxins. The bicomponent toxin Panton-Valentine leukocidin (PVL) is associated with severe necrotizing pneumonia in children. Exfoliative toxins EF toxins are implicated in the disease staphylococcal scalded-skin syndrome (SSSS), which occurs most commonly in infants and young children. It may also occur as epidemics in hospital nurseries. The protease activity of the exfoliative toxins causes peeling of the skin observed with SSSS. Protein A is anchored to staphylococcal peptidoglycan pentaglycine bridges (chains of five glycine residues) by the transpeptidase sortase A (5). Protein A, an IgG-binding protein, binds to the Fc region of an antibody. In fact, studies involving mutation of genes coding for protein A resulted in a lowered virulence of *S. aureus* as measured by survival in blood, which has led to speculation that protein A-contributed virulence requires binding of antibody Fc regions (6). Protein A in various recombinant forms has been used for decades to bind and purify a
wide range of antibodies by immunoaffinity chromatography. Transpeptidases, such as the sortases responsible for anchoring factors like Protein A to the staphylococcal peptidoglycan, are being studied in hopes of developing new antibiotics to target MRSA infections. S. aureus infections can be spread through contact with pus from an infected wound, skin-to-skin contact with an infected person by producing hyaluronidase that destroys tissues, and contact with objects such as towels, sheets, clothing, or athletic equipment used by an infected person. Deeply penetrating S. aureus infections can be severe. Prosthetic joints put a person at particular risk for septic arthritis, and staphylococcal endocarditis (infection of the heart valves) and pneumonia, which may be rapidly spread at slow rates. The Translational Genomics Research Institute showed that nearly half (47%) percent of the meat and poultry in U.S. grocery stores were contaminated with S. aureus, with more than half (52%) of those bacteria resistant to antibiotics. This study aimed to know the effect of S. aureus on the internal organs during the severity and progress of the mastitis disease.

Materials and Methods:

1- Bacterial isolates: after the isolation of Staphylococcus aureus bacteria on the blood agar and then on mannitol salt agar, the bacterial suspension (1x10⁶) was prepared as the method in (9). The mice mammary glands were injected by Staph aureus bacteria (0.1cc) for each teat from two to four teats for each one female. The female mice aging from (one month–two months) and weight from (25-30) grams were divided into 6 groups and each group consists of 5 animals:
A- The first group was killed after 24 hours from the injection by the bacteria.
B- The second group was killed after 48 hours from the injection.
C- The third group was killed after 72 hours from the injection.
D- The fourth group was killed after one week from the injection.
E- The fifth group was killed after two weeks from the injection.
F- The sixth group was stayed as control group without infection.

2- Histopathology:

After one day mice were scarified under anesthesia. Tissue specimens from liver, pancreas, kidney, spleen, heart, lung, intestine, stomach, uterus, ovary, oviduct and mammary gland were taken for histopathological examination using 10% neutral buffered formalin as a fixative, then processed routinely in histokinette, cut at 5 mm thickness by microtome and stained with hematoxylin and eosin stain then examined under light microscope (10). After 2,3 days and 1-2 weeks animals of group 2, 3, 4, 5 and 6 were dissected in the same manner as those sacrificed after 1 day.

Results:

Histopathological changes:

1- Liver:
After 1 day: showing congestion of central vein & swelling of hepatocyte lead to stenosis of the lumen of the sinusoid. After 2-3 days: showing swollen hepatocyte with vascular degeneration of hepatocyte and infiltration of neutrophil in the sinusoid and dilatation of the sinusoid. After 1-2 weeks: showing congestion, hemorrhage and necrosis of hepatocyte. Also focal aggregation of neutrophil in the parenchyma and infiltration of lymphocyte in the sinusoid. (Figure 1).

2- Pancreas:
Mild congestion of blood vessels and mild infiltration of neutrophil. After 2-3 days: similar lesion in the 1 day period. (Figure 2). After 1-2 weeks: showing severe congestion & focal aggregation of neutrophil.

3- Kidney:
After 1 day: showing mild congestion of the blood vessels to the glomeruli tuft. Degeneration of epithelial lining renal tubule lead to stenosis of lumen or closed (cloudy swelling). After 2-3 days: showing severe congestion of blood vessels of renal tubule and glomeruli tuft. Swelling & degeneration of epithelial lining of renal tubule. Also focal aggregation of neutrophil in the cortex & medulla. (Figure 4). After 1-2 weeks: similar lesion as in the 2-3 days period.
4- Spleen:
After 1 day. Showing congestion of blood vessels & mild infiltration of neutrophil in the blood sinuses. After 2-3 days. Similar lesion in the 1 day period.
After 1-2 weeks. Showing sever congestion with moderate infiltration of neutrophil. Also proliferation of megakaryocyte and hyperplasia of lymphoid follicle. (Figure 3).

5- Heart:
After 1 day. Showing mild congestion of blood vessels between muscle fiber and endocardial lumen. Also mild infiltration of neutrophil between muscle fiber. After 2-3 days. Similar lesion in the 1 day period.
After 1-2 weeks. Showing sever congestion & hemorrhage of blood vessels between muscle fiber. Infiltration of neutrophil between muscle fiber and loss of striation of the muscle fibers. (Figure 6).

6- Lungs:
After 1 day. Thickening in the wall of the alveoli due to congestion of blood capillary. Infiltration of neutrophil in the interstitial tissue with emphysema. After 2-3 days. Similar 1 day period. After 1-2 weeks. Showing hemorrhage & congestion of blood capillary. Sever thickening of alveoli wall and inter alveoli septa. Infiltration of neutrophil in the lumen of the alveoli, bronchiol, bronchus & emphysema. (Figure 5).

7- Intestine:
After 1-2 days. Showing desquamations of epithelial lining mucosal layer. With infiltration of mucosa sub mucosa by neutrophil. Congestion of blood vessels(Figure 8). Lumen of intestine contain exudates consists of large number of neutrophil and debirs cells of mucosa & sub mucosa. After 3 days. Similar lesion in the 1-2 days but severity. After 1-2 weeks. Showing large number of dead & live neutrophil also macrophage replase the exhibit tissue. These abeses diagnosis as chronic suppurative enteritis.

8- Stomach:
After 1-2-3 days. Desquamation of partial mucosal layer & dilatation of mucosal gland. After 1-2 weeks. Showing desquamations all mucosal layer & distraction due to degeneration with infiltration of neutrophil, lymphocyte & macrophage in the muscular layer. (Figure 7).

9- Uterus:
After 1-2-3 days. Showing congestion of blood vessels in endometrium with infiltration of neutrophil in endometriu, myometrium & stroma. After 1-2 weeks. Showing sever congestion of blood vessels in endometrium with infiltration of neutrophil & monocyte cells. In the myometrium and hyperplasia of endometrium epithelial. (Figure 9).

10- Ovary:
After 1-2-3 days. Showing mild to moderate congestion of blood vessels & infiltration of neutrophil. After 1-2 weeks. Showing sever congestion of blood vessels & foci aggregation of neutrophil.

11- Oviduct:
After 1-2-3 days. Showing mild to moderate congestion of blood vessels infiltration of neutrophil. After 1-2 weeks. Showing sever congestion of blood vessels with infiltration of neutrophil with hyperplasia of epithelial lining projection lead to present papillary in the lumen. (Figure 11).

12- Mammary gland:
After 1-2-3 days. Showing congestions of blood vessels with infiltration of neutrophil between interstitial tissue. (Figure 12). After 1-2 weeks. Showing sever infiltration of neutrophil with thicking of interstitial tissue between glandular alveoli & necrosis.
Fig1: Histopathological section in liver of one animal 2 weeks showed necrosis of hepatocyte (→) with foci infiltration of neutrophils (←→) in the sinusoid dilatation. (H&EX400).

Fig2: Histopathological section in pancrease of one animal at 2-3 days showed infiltration of neutrophils (→) & congestion of blood vessels (←→). (H&EX400).

Fig3: Histopathological section in spleen of one animal at 2 weeks showed infiltration of neutrophils (→→) & congestion of blood sinuses (←→) with hyperplasia of lymphoid follicles & proliferation of megacarocyte (←→). (H&EX400)

Fig4: Histopathological section in kidney of one animal at 3 days showed focal infiltration of neutrophils (→→) in interstitial tissue & in the cortex and medulla & sever congestion of blood vessels of glomeruli tuft (←→) with degeneration of epithelial lining of renal tubule (cloudy swelling(←→)). (H&EX400).
Fig 5: Histopathological section in lung of one animal at 1-2 weeks showed haemorrhage of blood capillaries. Severe thickening of alveoli wall and inter alveoli septa. Infiltration with neutrophils (H&E X400).

Fig 6: Histopathological section in heart of one animal 1-2 weeks showed haemorrhage of blood vessels between muscle fiber. Infiltration of neutrophil between muscle fiber and loss of striation of the muscle fibers (H&E X400).

Fig 7: Histopathological section in stomach of one animal at 1-2 weeks showed desquamation of all mucosal layer & distraction due to degeneration with infiltration of neutrophil, lymphocyte & macrophage in the muscular layer (H&E X400).

Fig 8: Histopathological section in intestine of one animal at 1-2 days showed desquamations of epithelial lining mucosal layer. With infiltration of mucosa sub mucosa by neutrophil (H&E X400).
Discussion:

All examined organs showed suppurative reaction. These results agreed with (11) who showed that *S. aureus* infections are often acute pyogenic and spread to surrounding deeper tissues or metastasize to other sites involving other organs, resulting in disseminated or deep-seated infections which are life-threatening disease. Also (12) explained that both localized infection, such as soft tissue abscess, and life-threatening systemic factors that decrease
Phagocytosis and factors that interact with anti staphylococcal antibodies and elaborate protease, exotoxines and enzymes, factors that specifically cause cell and tissue damage. The severe congestion of blood vessels and degeneration in most organs were due to septicemia and endotoxins, indicating that *S. aureus* induces septic shock. Shock defined as inadequate perfusion of tissue resulting in cell dysfunction and death. Sepsis result in much more complex form of shock. This evident was reported by(13,10) who explained that cell wall secreted protein A, hemolysins (α, β and δ-toxine), and cell wall components such as PGN and alanylated LTA acid were involved in the synthesis of inflammatory cytokines by monocytes/macrophages and these cytokines may contributed to sepsis. Degeneration in some organs were seen in liver, kidney, intestine, stomach, probaply due to cytotoxic effects of *S. aureus* products. These explanation were agree with investigation of (14) who discussed the cytotoxic action of α-toxin produced by *S. aureus* is reflected in a rapid depletion of cellular ATP with 30 minutes and these toxine lead to release of IL-1β, TNF-α from monocytes, TNF-α and IL-1β induce cardiac depression in sepsis, also the recruitment and activation polymorphonuclear cell (PMNs) may also contribute to the development of septic myocardial failure(15). α-toxine may initiate cellular events that are relevant to the quantities of cysteiny-Leukotriene, LTB4 and 5-OH-eicosatetraenoic acid lead to neutrophils accumulation and coronary vasoconstriction and dysfunction(16). *S. aureus* can express a toxin that specifically acts on polymorphonuclear leukocytes. Phagocytosis is an important defense against staphylococcal infection so leukocidin should be a virulence factor (17).

The supprative lesion is in agreement with (18) Liver X receptors (LXRs) a and b belong to a group of nuclear receptors which, after ligand binding, regulate gene transcription. Activation of LXRs inhibits inflammation and autoimmune reactions. Animals lacking LXRa develop more severe infection, as demonstrated by a greater amount of bacteria in macrophages, more neutrophil abscesses in the liver, and higher mortality. The expression of LXRa, but not LXRb, is strongly stimulated in macrophages infected with intracellular pathogens such as Listeria and Shigella flexneri, but it is only weakly stimulated by extracellular pathogens such as E. coli or *Staphylococcus aureus*(18). When macrophages phagocytose bacteria or other pathogens which contain little or no cholesterol, LXRs are not stimulated, which allows the inflammatory reaction to develop; this reaction is desirable to protect against pathogens(19). Hyperplasia of splenic white pulp and lymphatic aggregation around blood vessels and hyperplasia of epithelial lining of internal organs in 1-2weeks correlated with agood acquired immunity (20).

The endocarditis lesion agreed with (21) these bacteria enter the blood stream and establish themselves in the damaged heart valves (especially in prostatic heart valves). They can produce adhesins, dextran and fibronecting binding proteins, attach to the heart valves. Visible abscess, collapse in lung & cloudy swelling, degeneration of cortical renal tubule reported agree with (22) the reactions described as being due to *Staphylococcus* toxin. Also agree with (21) who explain that *Staphylococcus* is a commonly occurring disease resulting in a fatal generalized septicemia or in a localized suppurative inflammation. *Staph. aureus* is common disease in both domestic and wild rabbits (10). The disease is usually sporadic and of little economic importance for commercial rabbitries. Most often, suppurative lesions with *Staphylococcal* infection, often lead to chronic abscessation in affected sites. The acute septicemia from occurs mostly in neonatal kits and can have lesions ranging from few and nonspecific to multifocal and suppurative in various organs, including the lung, kidney, spleen, heart and liver. also lesion in lung agree with(23) isolated Staph from all 5-month old NewZealand four rabbit with mild mucosuppurative discharge. (24) found that *Staphylococcosis* caused by Staph. aureus may be manifest as fat pneumonia in rabbits (25) isolated Staph.aureus from upper respiratory tract of healthy rabbits with an incidence of 100%. The suppurative lesion in reproductive organs agee with(26) who explained that *Staphylococci* produce many extracellular proteins that add to their pathogenicity: surface proteins that promote adherence, enzymes that degrade host compounds, and toxins that damage host cells. *Staphylococci* induce platelet aggregation, and *S. aureus* specifically produces coagulase, both properties which promote thrombosis of small vessels, as seen in the uterine submucosa of this rabbit. There is a high
correlation between those Staphylococci that produce coagulase and those that produce toxins. Since the uterine infection was so acute and severe, it was likely that a staphyloccocal toxin was also involved, most likely alpha-toxin which selectively damages the endothelial layer of blood vessels by forming hexametric pores within the plasma membrane. The experimental appears Uterus. Diffuse caseous necrosis of the endometrium with bacterial colonies on the surface and dense fibrin thrombi in the lamina propri. Endometritis, necrotizing, acute, diffuse, severe, with fibrin thrombi, edema, numerous cocci, and transmural lymphoplasmacytic, neutrophilic and histiocytic inflammation. Also agree with few cases endometritis with mucopurulant inflammation of uterus in female pregnant does. Exactly more or less the same observation was recorded (27).

References

21. Prabhu, P. (2010). How staph aureus in the blood can cause fatal infections. Copyright © 2002-2011 Helium, Inc. All rights reserved. 200 Brickstone Square Andover, MA 01810 USA

