Effect of alcoholic extract of soy bean consumption by pregnant mice on the testis and epididymis of their male offspring's

Abeer Salih Ali , Nisreen Khazal Flayyih , Hadeel Mohammed Qasim

Department of biology, College of science, Al – Mustansirya University
Department of Applied Embryology, institute of Embryo research & Infertility treatment / Al–Nahrain University

Abstract:
Soy is flavones are phytoestrogens with potential hormonal activity due to their similar chemical structure to 17-B-estradiol. The increasing availability of Soy is flavones throughout the food supply and through use of supplements has prompted extensive research on biological benefits to humans in chronic disease prevention and health maintenance. The objective of this study was to assess the effect of consumption of soy bean by pregnant mice on histomorphology of testis, epididymis in the male offspring's. Twenty pregnant female mice at age of six weeks were used as a model for this study.

After 40 days (around the puberty age) the animals were sacrificed to get their testes and epididymis each testis and epididymis was weighted, then prepared using routine histological technique mouse born from mother treated with Soy bean extract (1.5mg daily), Note the absence of mature sperms and the appearance of immature sperms in the lumen seminiferous tubules and the appearance immature sperms in the lumen of the epididymis.

Diameters of seminiferous tubules and epididymis together with the thickness of their germinal wall were calculated, these observation indicate that the perinatal exposure of male mice to is flavones affected in testis and epididymis, and they imply that Soy bean has potential implication for testis function.

الخلاصة:
تعد الصويا ايزوفولافونيد من الفاوينو استروجين الذي يتميز بأنه يمتلك فعالية هرمونية كامنة تعزى لتركيبها. الهدف من هذه الدراسة هو تحديد أو تقييم التأثيرات الناجمة عن تناول الصويا من قبل الفئران الحوامل والبحث الرئيسي من هذه الدراسة هو تشريحة المراحل المفيدة في الثدييات التي أُخذت خلال فترة الحمل بالصدمة Commun (20) فار. حامل ناضجة بعد سته أسابيع و التي أُعند عليها كتموزوج في هذه الدراسة وبعد يوم (40) يوم (خلال عمر النضج) تم تشريح الحيوانات لأخذ الخصى والبربخ لها و تم قياس وزن كل واحد. ثم تم تحضير عينات من الصويا وكاملة الجرعه (1.5 mg) و ذلك لحظ غاب أي حالما ناضجة و ظهر حياما غير ناضجة مرتبطة في التجفيف القلي ولكاتيا جنبياً. أيضاً لحظ في بريخ النكتور الفئران المولد من الأمهات التي تم استخدامها مخصص الصويا غابي الحيوانات في البربخ. وقد قام قسم الفرق المواد للاناثي والبربخ مما و قياس تجربة الجذور لكلاهما. هذه الملاحظات تدل على أن تعرض الفئران الذكور المسبق لـ ايزوفولافونيد يؤثر في الخصى والبربخ وهذا يشير إلى ان الصويا يمتلك تأثير كامن على وظائف الخصى.
Introduction:
Soy protein based infant formula (SBIF) has been used throughout the world for over 100 years [1]. SBIFS were initially developed as an alternative to cow's milk based formula for infants with immuneoglobulin E-mediated milk allergies, post-infections diarrhea due to lactose intolerance, galactosemia, or for infants who required a vegan substitute [2]. Genistein and daidzein are present at high concentration (0.2-1.2mg/g dry wt) in soy beans [2]. Genistein and daidzein may reach micromolar concentration in infants fed soy protein formulas [3].

Evidence indicates that genistein and daidzein act as estrogen receptors alpha (ESR1) and beta (ESR2) agonists and/or antagonists and have the capacity to regulate cell proliferation, growth and function [4]. Because reproductive tract tissues express high levels of steroid hormone receptors, including ESRs, consumption of high levels of Soy proteins for prolonged periods of time may affect reproductive tract development and function. In addition to exerting hormone like effects, isoflavones may also act through a non-hormonal mechanism by inhibiting tyrosine kinases and inducing some growth arrest and apoptosis [5]. According to the infant formula Act of 1980, amended in 1986, SBIFs meet all nutritional requirements for term infants [6].

Data from North America suggest that approximately 37.2% to 43.8% of infants are formula fed three to six months postpartum [4]. Recent data suggests the prevalence of feeding SBIF is 20-25% in Canada [7], and the united states [8], and markedly lower (2-3%) in the united kingdom [9] and Australia [10].

Materials and methods:
Animals and treatment 20% female albino mice at age of six weeks were used as model for this study obtained from the animal house at the Al-Nahrain University. The animals were kept in the laboratory under constant temperature (25°C) for at least one week before and along the period of the experimental work. The mice were distributed randomly into two groups: the control group (C) (10) and the experimental group (G) (10) received (1.5 mg/kg) alcohol extract of Soy bean dissolved in (1ml) distilled water orally for the whole pregnancy while the (C) was given distilled water only in the same amount and for same period of time. Histological and morphometrical examination: After 40 days (around the puberty age), the animals were sacrificed to get their testes and epididymis. Each testis and epididymis was weighted, then fixed in (10%) normal saline and histological sections with thickness of (5micrometer) were prepared using the routine histological technique and stained with Haematoxylin -eosin [11]. Diameters of seminiferous tubules and epididymis together with the thickness of their germinal wall were calculated by ocular micrometer about a total of 25 cross sections of round shape seminiferous tubules and epididymis randomly selected from each mouse for measuring their diameter a calibrated eye (X400) ocular micro meter in order to draw their mean value for individual mice [12].

Statistical analysis:
The goal of the analysis was to test the effects of Soy bean or isoflavonoid treatment on weight, diameter, thickness for testes and epididymis. Descriptive statistics were calculated to assess normality and equality of variances. Analyses were performed using SAS (2004) and all result was expressed as means + standard division. Differences were considered significant at P<0.05.
Table-1: Pregnancy outcome (e.g., weight, diameter and thickness for both testes and epididymis), anogenital sex organ and testes weights in adult mice.

<table>
<thead>
<tr>
<th></th>
<th>Weight of testis (g)</th>
<th>Weight of epididymis (g)</th>
<th>Diameter of seminiferous tubules (µm)</th>
<th>Diameter of epididymis (µm)</th>
<th>Thickens of seminiferous tubules(µm)</th>
<th>Thickens of epididymis (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated</td>
<td>0.28* ±0.004</td>
<td>0.54* ±0.005</td>
<td>180.2* ±0.4</td>
<td>152.3* ±0.57</td>
<td>87.3* ±0.67</td>
<td>24.7* ±0.12</td>
</tr>
<tr>
<td>control</td>
<td>0.8 ±0.005</td>
<td>0.73 ±0.008</td>
<td>199.7 ±0.19</td>
<td>167.2 ±0.62</td>
<td>95.4 ±0.78</td>
<td>27.8 ±0.26</td>
</tr>
</tbody>
</table>

Results:
The result showed that treatment with extract of Soy bean caused significant (P<0.05) decrease in epididymis, and significant increase in testis (P<0.05). Whereas the findings of histology in the testis of young male (40 days) mouse born from Soy bean extract (mg daily), Note the absence of mature sperms in the lumen of the somniferous tubules and the appearance of clumps of immature sperms connected to the germinal epithelium figure-1.

Figure-1: Cross section in the testis of young male(40 days) mouse born from mother treated with soy bean extract (mg daily), Note the absence of mature sperms in the lumen of the somniferous tubules and the appearance of clumps of immature sperms connected to the germinal epithelium (arrows). 400X (H&E).

Figure-2: Cross section in the testis of young male mouse born from control group mother. Showing the wide lumen of seminiferous tubules filled with mature sperm (arrows) and complete development of the lining epithelium 400 X(H&E).

And the results of epididymis of young male (40 days) mouse from mother treated with Soy bean extract (mg daily) Note the absence of mature sperms in the lumen of the epididymis fig(3).
Figure-3: Cross section in the epididymis of young male (40 days) mouse born from mother treated with soy bean extract (mg daily), Note the absence of mature sperms in the lumen of the epididymis (arrows). EC; Epithelial cell. (←) 400X (H&E)

Compared with control figure-4

Figure-4: Cross section in the epididymis of young male mouse born from control group mother. Showing the wide lumen of epididymis filled with mature sperm (arrows) and complete development of the lining epithelium. EC; Epithelial cell layer (), ES; Epididymal spermatozoa (←).

Discussion:
The present results demonstrate that alcoholic extract of Soy bean causes a significant decrease in fertility in male mice. This finding has implication for the use of soy bean by pregnant mothers and in infant formulas. Organ weights, testes and epididymis and histological findings for testes and epididymis were evaluated at (1.5mg/kg) alcoholic extract of soy bean causes changes in the organs weight and variables evaluated.

These findings are agree to our previous bioflavonoid treatment study demonstrating marked accessory sex gland atrophy by cline et al. [13]. All mice receiving the is flavonoid exhibited accessory sex gland atrophy spearow et, al[14]. 750000 infants fed soy based cereals in the united states each year are exposed to genistein and daidzein which attain blood concentrations in the range between 300 and 600 nm [15, 16], and in other study the testes of the soy infant formula-fed monkeys had larger numbers of both- germ cell (sertoli cell) and lydige cells (interstitial cells) with no evidence of a long_term adverse effect of soy isoflavonoids fed during development [17]. Giampietro et, al [18]. evaluated the effects of the use of soy_ protein _ based formula in children ranging from 7 to 96 more of
age and found no evidence of precocious puberty, gynecomastia, or altered bone metabolism.

In other study show that low concentrations of genistein (≤10mM) tend to induce cell proliferation in estrogen sensitive tissues \([19, 20]\). Increases in serum testosterone levels were previously associated with decreasing steroid genic enzyme activity, indicating the possibility of greater leidyg cell numbers, especially as animals were fed soy diets beginning in the prepubertal and pubertal periods \([21, 22]\) of intense mitotic activity in leidyg cells \([23]\), and also \([24]\) observed that genistein causes direct inhibition of 3ß–hydroxy steroid dehydrogenase (HSD3ß) activity in human and rat testis. Thus, perinatal exposures to soy is flavones possibly exert differential effects on steroid genic enzyme capacity leidyg cell, moreover, genisten is known to exert other biological effects, including tyrosine kinase inhabition and antioxidant activity \([25, 26]\).

Further stud ies investigating the effects of soy is flavonoids on leidyg cell density and function are warranted, although weare unaware of data demonstrating reduced fertility as a result of ingesting soy protein or isoflavonoids by nonhuman primates or humans. Thus exposure to isoflavonase occurring in the fetal and neonatal periods have the potential to alleviate affects associated with deficits in androgen biosynthesis and/or augment testicular and serum testosterone levels \([27]\).

This effect has implications for reproductive health, because high intratesticular testosterone concentrations may adversely affect the process of spermatogenesis and sperm production. On other hand, a number of studies have shown that isoflavones may act within the seminiferous epithelium to impact spermatogenesis without concomitant endocrine changes \([28]\).

Thus multiple cell types in the testis are likely targets for the action of isoflavones. Also, the testicular actions of daidzein and equol, which are present in body tissues (along with genistein) after consumption of soy-based meals, have received little or no attention. Additional studies are warranted to examine the outcome of combined action by isoflavones in leidyg cells and germ cells. These studies will provide information relevant to risk assessment of the population regarding the potential for soy based food products to cause testicular toxicity, especially in neonates, also future studies should address the effects of other soy components commonly consumed by human beings that act alone or in combination with isoflavonoids.

Conclusions:

The biological effects of soy isoflavone exposure as a result of SBIF consumption is controversial and inconclusive. In summary, only one retrospective study has reported effects of feeding. SBIF on health outcomes at adulthood and few studies have examined infant health after expo sure to SBIF. While studies using a variety of animal models report negative effects of soy isoflavones exposure during development, it is unclear whether these data can be extrapolated to human infants, these studies do however suggest effects of early exposure to isoflavonoids is warranted.

References:

4- Ren, M. Q.; Kuhn, G.; Wegner, J. and chen, J. Isoflavones, substances with multibiological and clinical properties.
AJPS, 2013, Vol. 13, No.2

9- UK Department of health. Advice on Soy based infant formula; Press Release, committee on toxicity of chemicals in food, consumer products, and the Environment: London, UK. 1996. No. 96/244

