A Note on Pure Submodule Relative to Submodule

Muna Jasim Mohammed Ali*, Uhood S. Al-Hassani** and Zahraa A. Mohammed***
*Department of Mathematics, college of Science for Women, University of Baghdad, Baghdad-Iraq.
**Department of Computer Science, college of Science, University of Baghdad, Baghdad-Iraq.
***Department of Astronomy, College of Science, Mustansiriya University, Baghdad-Iraq.

Abstract
In this paper we used the concept of a pure submodule relative to submodule T in two concepts, pure relative to submodule T Baer injective modules and module with pure relative to submodule T intersection property. Some properties and some characterization of this notions are established.

Keywords: pure submodule, T-pure submodule, T-pure Baer injective module.

Introduction
Let R be associative ring with a non-zero identity and R-module will mean unitary left R-module. Recall that a submodule N of an R-module M is pure submodule if for every finitely generated ideal of R, N∩ IM = IN [1]. Following [2] a submodule N of an R-module M is pure submodule relative to submodule T of M (simply T-pure) if N∩IM=IN+T∩(N∩IM) for every ideal I in R. Every pure submodule is T-pure submodule but the converse is not true for example see [2]. An R-module M is called a pure Baer injective module, if for each pure left ideal A of R, any R-homomorphism f : A → M can be extended to an R-homomorphism h: R → M [3].

In this paper we introduce the concept of pure relative to submodule Baer injective modules (simply T-pure Baer injective). In [4] modules with the intersection property of any two pure submodule is pure (simply PIP). This led us to introduce the concept of a module with the property that the intersection of any two T-pure submodules is T-pure submodule.

1- Pure Relative ToSubmodule Baer Injective Modules.
Now we introduce the concept of pure relative to submodule Baer injective modules (simply T-pure Baer injective).

Definition 1.1 : [2]
Let M be an R-module and T be a submodule of M. A submodule N of M is said to be T-pure if for each ideal I of R, N∩IM = IN +T∩(N∩IM).

Let T be an ideal in R, a left ideal A of R is said to be T-pure if for every x ∈A there exists y ∈ T ∩ A.

Now we give some properties of T-pure submodules.

Remark 1.2 :
1. Let M be an R-module and let N be T-pure submodule of M. If H is T-pure submodule of N, then H is T-pure submodule of M.
2. Let M be an R-module and let N be T-pure submodule of M. If A is a submodule of M containing N, then N is a T-pure submodule of A.
3. Let M be an R-module and let N be T-pure submodule of M. If H is a submodule of N and H is submodule of T, then N

Proof:
1- Let I be an ideal of R, since N is T-pure in M and H is T-pure in N, then N[boyfriend] IM = IN + T[boyfriend] (N[boyfriend] IM) and hence H[boyfriend] IM ⊆ [IN+T[boyfriend] (N[boyfriend] IM)].

2- Let I be an ideal of R, since N is T-pure in M, then N[boyfriend] IM = IN+T[boyfriend] (N[boyfriend] IM).
Definition 1.3:
Let M be an R-module and T be a submodule of M. M is called T-pure Baer injective module if for each T-pure ideal A of R, any R-homomorphism f : A → M, there exists R-homomorphism h : R → M such that f(a) = h(a) for all a ∈ A.

Clearly, an R-module is pure Baer injective if and only if M is (0)-pure Baer injective. If M is a T1-pure Baer injective R-module, then M is T2-pure Baer injective for each submodule T2 containing T1. Thus every pure Baer injective module is T-pure Baer injective R-module.

Now we give another caretrization of T-pure Baer injective modules.

Theorem 1.4:
For an R-module M the following are equivalent:
1- M is T-pure Baer injective,
2- For T-pure left ideal A of R and every R-homomorphism f : A → M there exists m ∈ M such that for all a ∈ A, am = f(a)

Proof: Clear

Proposition 1.5:
If the direct product \(\prod_{\alpha} M_\alpha \) of R-modules is \(J_\alpha(T) \)-pure Baer injective, where \(J_\alpha \) is pinjection of \(M_\alpha \) into \(\prod_{\alpha} M_\alpha \) then \(M_\alpha \) is T-pure Baer injective for each \(\alpha \).

Proof:
Let A be a T-pure submodule of \(M_\alpha \) and f : A → \(M_\alpha \) be R-homomorphism. Since \(\prod_{\alpha} M_\alpha \) is \(J_\alpha(T) \)-pure Baer injective, there exists \(\rho_\alpha \) such that for all \(\alpha \), \(\rho_\alpha \circ f(\alpha) \in J_\alpha(T) \cap J_\alpha \circ f(A) \). Since \(\rho_\alpha \circ f(\alpha) \in J_\alpha(T) \cap J_\alpha \circ f(A) \), thus \(\rho_\alpha \circ f(\alpha) \in J_\alpha \circ f(A) \). Hence \(M_\alpha \) is T-pure Baer injective module for each \(\alpha \).

Recall that an R-module P is projective, if given any R-epimorphism \(f : A → B \), there exists R-homomorphism \(g : M → B \) can be lifted to an R-homomorphism \(h : M → A \). [5]

Theorem 1.6:
If every T-pure ideal of R is projective. Then the homomorphic image of a T-pure Baer injective module is t-pure Baer injective.

Proof:
Consider the following diagram of R-modules:

\[
\begin{array}{ccc}
0 & \rightarrow & M \\
\downarrow \ g & & \downarrow \ h \\
T & \rightarrow & K \\
\downarrow \ h_1 & & \downarrow \ f \\
0 & \rightarrow & A \\
\end{array}
\]

Where A is left T-pure ideal of R and i is the inclusion map and M is T-pure Baer injective module. Projectivity of A shows that for some R-homomorphism \(h : A → M \) ther is R-homomorphism \(h: A → M \) such that \(i(a) = f(a) \) for all \(a ∈ A \).

Since M is T-pure Baer injective module, there exists \(h_1 : R → M \) such that \(i(\alpha) \in T \cap f(A) \). Hence \(h_1 \circ i(a) ∈ T \cap f(A) \). Therefore K is T-pure Baer injective.

The converse of the above theorem is not true in general. We need the following concept, let M be an R-module and T a submodule of M, M is said to be projective relative to submodule T (simply T-projective), if for each R-epimorphism \(f : A → B \), there exists R-homomorphism \(g : M → B \) such that \(g(\alpha) \in T \cap f(A) \).
Let A_1, B_1 be two $\frac{T}{N}$ pure submodules of $\frac{M}{N}$ and let K be an ideal in R. We want to show that
$$\left(\frac{A_1}{N} \right) \cap \left(\frac{B_1}{N} \right) = K \left(\frac{M}{N} \right),$$
and this implies that
$$\frac{A_1(NIM+N)}{N} = \frac{IA_1+N}{N} + \frac{(T+N)(An(N+M+N))}{N},$$
therefore,
$$A \left(\frac{I(NIM+N)}{N} \right) = IA_1+T \left(\frac{IA_1}{N} \right) + N,$$
and hence $(A \left(\frac{I}{N} \right) + N = IA_1 + T \left(\frac{IA_1}{N} \right) + N).$ Since
$x \in A \left(\frac{I}{N} \right) \subseteq A \left(\frac{I}{N} \right) (IM+N)$, then
$x \in IA + T \left(\frac{IA_1}{N} \right) + N$
Let $x = w + m + n$, where $w \in IA$ and $m \in T \left(\frac{IA_1}{N} \right)$ and $n \in N$.
Now, consider $n = x - w - m \in N \left(\frac{I}{N} \right) IM = IN + T \left(\frac{I}{N} \right) N(IM) \subseteq IA + T \left(\frac{IA_1}{N} \right)$
And hence A is T-pure in M. Since M has the T-PIP, then $A \left(\frac{B}{N} \right)$ is T-pure in M.
Thus $(A \left(\frac{B}{N} \right) \cap KM = K \left(A \left(\frac{B}{N} \right) + T \left(\frac{IA_1}{N} \right) \right)$.
Now, let $x \in \left(\frac{A_1}{N} \right) \cap \left(\frac{B_1}{N} \right) \cap K \left(\frac{M}{N} \right)$, then $x = w$ +N, where $w \in KM$ and $x = a + N = b + N$, where $a \in A$ and $b \in B$. Thus $w \in A \left(\frac{B}{N} \right)$.

2-Modules with T-Pure Intersection Property
In this section Let R be commutative ring with identity, we introduce the concept of module which have T-pure intersection property.

Definition 2.1:
An R-module M is said to have the pure relative to submodule intersection property (for short T-PIP) if the intersection of any two T-pure submodules is again T-pure.

Proposition 2.2:
1. If an R-module M has the T-PIP, then every T-pure submodule of M has the T-PIP.
2. Let N be T-pure submodule of an R-module M and T submodule of N. M has T-PIP if and only if $\frac{M}{N}$ has $\frac{T}{N}$-PIP.

Proof:
1. Clear.
2. (\Rightarrow) Conversely let E and F be T-pure submodule of M, let N be a submodule of E and N be a submodule of F then $\frac{E}{N}$ and $\frac{F}{N}$ is $\frac{T}{N}$-pure submodule of $\frac{M}{N}$. Since $\frac{M}{N}$ has $\frac{T}{N}$-PIP,
then $\frac{E}{N} \cap \frac{F}{N} = \frac{E \cap F}{N}$ is T pure submodule of $\frac{M}{N}$. Therefore $E \cap F$ is T- pure submodule of M.

Theorem 2.3:

Let M be an R- module, then M has the T-PIP if and only if

\[(IA \{ B)) + T \{(A \{ B)) \{ IM\} = I(A \{ B) + T \{(A \{ B)) \{ IM\} \text{ for every ideal } I \text{ of } R \text{ and for every } T \text{- pure submodule } A \text{ and } B \text{ of } M.\]

Proof:

Suppose M has the T-PIP then for each T-pure submodules A and B, $A \{ B$ is T-pure. Let I be an ideal in R, then

\[(A \{ B) \{ IM = I (A \{ B) + T \{(A \{ B)) \{ IM\}.\]

It is clear that $I (A \{ B)$ \{ IM \} $\subseteq (IA \{ B) + T \{(A \{ B)) \{ IM\}$. But $IA \{ IB) + T \{(A \{ B)) \{ IM\} \subseteq A \{ B \{ IM = I (A \{ B)$ \{ IM \} .

Thus $IA \{ IB) + J(R) M \{ (A \{ B) \{ IM\} = I (A \{ B) + T \{(A \{ B)) \{ IM\}$.

Conversely, let A and B be T-pure submodule of M and I an ideal in R. Then $A \{ B \{ IM = A \{ IB \{ IM \} = A \{ IB \{ IM \}$. Similarly $A \{ B \{ IM = B \{ IM \} = (IA + T \{(B \{ IM\).

But A, B are T- pure in M. Thus $A \{ B \{ IM \subseteq IA \{ IB) + T \{(A \{ B) \{ IM\}$.

\[= I (A \{ B) + T (A \{ B) \{ IM)\]

Theorem 2.4:

Let M be an R- module, then M has the T-PIP if and only if for every T-pure submodules A and B of M and for every R- homomorphism $f = A \{ B \rightarrow M$ such that $A \{ Im f) + T \{(A + Im f) \{ IM\} = \{0\}$ and $A + Im f$ is T- pure in M, ker f is T- pure in M.

Proof:

Assume that M has the T-PIP. Let A and B be T-pure submodules of M and $f = A \{ B \rightarrow M$ be an R- homomorphism such that $A \{ Im f) + T \{(A + Im f) \{ IM\} = \{0\}$ and $A + Im f$ is T- pure in M. Let $K = \{ x + f(x), x \in A \{ B \}$. It is clear that K is a submodule of M.

To show that K is T- pure in M, let I be an ideal in R and

\[y = \sum_{i=1}^{n} r_{mi} \in K \{ IM, r_{i} \in R, m_{i} \in M.\]

Hence $y = \sum_{i=1}^{n} r_{mi} = x + f(x)$ for some $x \in A \{ B$. Since $y = \sum_{i=1}^{n} r_{mi} = x + f(x) \in A \{ B + Im f$. Let $f \subseteq A + Im f$ and $A + Im f$ is T- pure in M.

Thus $y = \sum_{i=1}^{n} r_{mi} \in (A + Im f) \{ IM = I (A + Im f) + T \{(A + Im f) \{ IM\}$.

Therefore

\[\sum_{i=1}^{n} r_{mi} = \sum_{i=1}^{n} r_{xi + yi} + k, x_{i} \in A, y_{i} \in Im f, \forall i = 1, \ldots, n k \in T \{ (A + Im f) \{ IM\}.\]

Thus

\[\sum_{i=1}^{n} r_{mi} = \sum_{i=1}^{n} r_{xi} + \sum_{i=1}^{n} r_{yi} + k, \text{ hence } \sum_{i=1}^{n} r_{xi} = \sum_{i=1}^{n} r_{yi} - f(x) + k \in (A \{ Im f) + T \{(A + Im f) \{ IM\}.\]

Therefore

\[x = \sum_{i=1}^{n} r_{xi} \in (A \{ B) \{ IM\}.\]

But $A \{ B$ is T- pure in M, hence is T-pure in A. Thus $A \{ B \{ IM = I (A \{ B) + T \{(A \{ B)) \{ IM\}$ by theorem (2.3). Thus $x \in I (A \{ B) + T \{(A \{ B) \{ IM\}$.

Let $x = \sum_{i=1}^{n} r_{wi} + h, w_{i} \in A \{ B, h \in T \{(A \{ B) \{ IM\). Then $f(x) = \sum_{i=1}^{n} rf_{i}(w_{i}) + f(h)$. Now $y = x + f(x) = \sum_{i=1}^{n} r_{wi} + \sum_{i=1}^{n} rf_{i}(w_{i}) + f(h) \in IK + T \{(K \{ IM\). Thus $K \{ IM = IK + T \{(K \{ IM\) and K is T- pure in M. Next we show that ker $f = (A \{ B) \{ K$. Let $x \in ker f$, then $x \in A \{ B$ and $f(x) = 0$. Hence $x \in K$.

Now let $x \in (A \{ B) \{ K$, then $x = y + f(y), y \in A \{ B$, then $x - y = f(y) \in A \{ Im f \leq (A \{ B) \{ IM\} = 0$. Therefore
f(x) = f(y) = 0 and x ∈ ker f. Since M has T-PIP, then \((A \bigcap B) \bigcap K = ker f \) is T-pure in M. Conversely, let A and B be T-pure submodules of M. Define \(f = A \bigcap B \rightarrow M \) by \(f(x) = 0, \forall x \in A \bigcap B \). It is clear \((A \bigcap IM) + T \bigcap (A + IM) = 0 \) and \(A + IM f = A \) is T-pure in M, then ker f = \(A \bigcap B \) is T-pure in M.

By the same argument one can prove the following

Theorem 2.5:

Let M be an R-module, then M has the T-PIP if and only if for every T-pure submodules A and B of M and for every R-homomorphism \(f = A \bigcap B \rightarrow C \), where C is a submodule of M such that \(A \bigcap C + T \bigcap (A + C \bigcap IM) = 0 \) and \(A + C \) is T-pure in M, ker f is T-pure in M.

References

