Computer Aided Strut-and-Tie Model (CASTM) for the Analysis of RC Deep Beams

* Department of Building & Construction Engineering, University of Technology, Iraq.
** Department of Civil Engineering/ Engineering College/ Al-Nahrain University, Baghdad – Iraq.

Abstract

Many studies and a lot of research work have been done on the analysis and structural behavior of reinforced concrete deep beams [1, 2 and 3]. In these studies different calculation methods were used. The Beam Method has been used for many years; the Strut-and-Tie Method (STM) is recently included in the Eurocode [4] and has been included in the Canadian Standard for the Design of Concrete Structures [5] since 1984 and the AASHTO LRFD Bridge Specifications [6] since 1994, it is a new concept for many structural engineers in the U.S. but specific code requirements were not incorporated into the ACI 318 Building Code [7] until the 2002 edition, as Appendix A. This paper aims mainly at finding the most economical way to analyze and design reinforced concrete deep beams. New computer program (CASTM), based on STM, aims to be "user friendly", presenting a complete packet not only as an analyzing tool but also as a design program.

KEYWORDS: Deep beam, Strut-Tie-Method (STM), Shear strength, ACI 318-11.
Notation
a Shear span measured from center of load to center of support, mm.
A_c Effective area of concrete, mm2
A_{cs} Cross section area at one end of the strut, mm2.
A_s Area of main longitudinal tension reinforcement mm2.
A_{s}' Area of compression reinforcement, mm2
A_v Area of vertical web shear reinforcement within spacing s_v, mm2.
A_{vh} Area of horizontal web shear reinforcement within spacing s_{vh}, mm2.
b Width of beam, mm.
d Effective depth of beam, distance from extreme compression fiber to centroid of longitudinal tension reinforcement, mm.
f'_c Cylinder compressive strength of concrete, MPa.
f_{cc} Effective compressive strength of the concrete in a strut or a nodal zone, MPa.
f_{ct} Indirect tensile strength (splitting tensile strength), MPa.
F Force in inclined strut, N.
F'_c Force equivalent to strut f'_c, N.
F_t Force in tension tie, N.
H Total depth of deep beam, mm.
jd Moment arm, mm
l_n Clear span measured face to face of supports, mm.
l_o Beam span center to center of supports, mm.
L Overall length of deep beam, mm.
L_b Length of load bearing block, mm.
L_s Length of support bearing block, mm.
P_u Ultimate load, kN.
s_v Spacing of vertical shear reinforcement in direction of longitudinal reinforcement, mm.
s_{vh} Spacing of horizontal shear reinforcement, mm.
V_n Nominal shear strength, N.
V_u Design shear strength, N.
w_s Width of horizontal strut, mm.
w_t Width of anchor tie, mm.
w_{eff} Effective width of strut, mm.
α_1, α_2 Angle of inclination of reinforcement to the axis of the beam, deg.
β_s Factor to account for the effect of cracking and confining reinforcement on the effective compressive strength of the concrete in a strut.
ϕ Design capacity reduction factor.
θ Angle of inclination of failure plane and diagonal compressive stress with the beam longitudinal axis, deg.
λ Modification factor reflecting the reduced mechanical properties of lightweight concrete.

INTRODUCTION
Analysis or design of reinforced concrete deep beams by the elegant Strut-and-Tie Method is often encumbered by the need to perform many time consuming calculations that are required to determine truss members forces and dimensions. This is a barrier to the use of STM, particularly for the analysis and design of highly complex D-Regions, for multiple load cases, or for design optimization. The CASTM program software package is created in this research by using Microsoft Excel 2007 and another one by using visual basic language programming (Appendix A). A flowchart of CASTM program software using visual basic language with few images will be illustrated. CASTM program is an analysis tool created to overcome the barriers of applying STM in an easy way to evaluate shear capacity of reinforced lightweight and normal weight concrete deep beams.

B-Regions And D-Regions
For the purpose of the design, a structure may be divided into B-(Beam) Regions and D-(Discontinuity or Disturbed) Regions. B-Regions are those parts of the structure in which there is a linear variation in strain over the depth of the member, while D-Regions are those parts of a structure in which there is a complex
variation in strain. Based on St. Venant’s principle, D-Regions lie within a longitudinal distance equal to the depth of the member from a concentrated force (load or reaction point), change in section depth, an opening, or another discontinuity. As Fig.1 illustrates, large portions of even common structures are D-Regions [8].

![Fig. 1 B- and D-Regions within a structural system [8]](image)

Strut-and-Tie Model (STM)

STM is an emerging procedure for the design of D-Regions. These are parts of a structure in which there is a complex variation in strain, such as corbels, deep beams, joints, and walls with openings. The STM design process involves idealizing that an internal truss carries the load through the discontinuity region to its boundaries, providing sufficient reinforcement to serve as the tension ties, and then checking that the compressive struts and nodal zones (joints) are large enough to support the applied forces. While the STM is conceptually simple, calculating and modifying the dimensions of the truss and its members can be prohibitively time consuming. The STM provides a novel design approach applicable to an array of design problems that do not have an explicit design solution in the body of the code (ACI 318M-2011[9]). This method requires the designer to consciously select a realistic load path within the structural member in the form of an idealized truss. By assuming that the nodes coincide with the centerline of supports, the geometry and the STM of Deep Beams is shown in Figs 2, 3. This model consists of three struts (AB, BC and CD), one tie (AD), and four nodes (A, B, C and D). In addition, supports at A and D act as struts representing reactions. The vertical strut at the top of nodes B and C represents the applied load.

A flow chart showing solution algorithm for STM of deep beams shown in Fig.4, is illustrated in Figure 5 according to ACI 318M-11[9].

![Fig. 2 Deep beam details.](image)

Strut-and-Tie Method (STM) Design Procedure

An emerging methodology for the design of all types of D-Regions is to envision and design an internal truss, consisting of concrete compressive struts and steel tension ties that are interconnected at nodes, to support the imposed loading through to the boundaries of the discontinuity region. This design methodology is called STM. The design process involves the steps described below.

i. Define the boundaries of the D-Region and determine the imposed local and sectional forces.

ii. Sketch the internal supporting truss, determine equivalent loadings, and solve for truss member forces.

iii. Select reinforcing steel to provide the necessary tie capacity and ensure that this reinforcement is properly anchored in the nodal zone (joint of the truss).

iv. Evaluate the dimensions of the struts and nodes, such that the capacity of these components (struts and nodes) is sufficient to carry the design forces values.
v. Provide distributed reinforcement to ensure ductile behavior of the D-Region.

Design Sequence Using Program Castm

The user begins by running the CASTM software; there are three dialogue boxes, Input data, Analysis and Help, as shown in home page Plate (1). First of all, the designer defines the geometry and material properties by selecting the (INPUT DATA) box. The first column under titled (Geometry) of (Input Data) page; as shown in Plate (2), is used to enter the geometry data of deep beam as L, H, b, a, d, Ls, Lb and Le, then the spans io and in will be estimated automatically. According to the shear provisions of the ACI design code (ACI 318M – 11[9]), the CASTM software checks the geometry input data to defined deep beam definition (a member with length of clear span measured face-to-face of supports (n) not exceeding 4h). The second column under titled (Materials), the f’c, fct and fy representing the properties of concrete and steel reinforcement can be defined. The area of horizontal and vertical shear reinforcements with their spacing can be defined according to ACI 318M-11[9], which states that the minimum web reinforcement ratios for both vertical and horizontal ones are 0.0025 with, the maximum spacing being d/5 and not more than 300mm. At the final stage, selecting the Analysis button the (Analysis) page will be displayed, as shown in Plate (3). This page illustrates the ultimate strength of deep beams, critical shear crack inclination and the nominal shear strengths at each node face strut and tie. Image (4), represents the (Help) page to define the meaning of all the geometry and materials notation used in the input data stage.

To check the validity of the CASTM software, the ultimate strength of reinforced concrete deep beams predicted by CASTM software, as shown in Plates 2 and 3 can compared with fully detailed results for the analysis by using STM according to ACI318-11[9] which is summarized in Appendix B of this paper.

CONCLUSIONS

Design by the elegant Strut-and-Tie Method is often encumbered by the need to perform many time consuming calculations that are required to determine truss members forces and dimensions. This is a barrier to the use of the STM, particularly for the design of reinforced normalweight and lightweight concrete simply supported deep beams, for multiple load cases, or for design optimization. The CASTM design tool is developed to overcome these barriers by creating an interactive design and analysis tool.

REFERENCES

7- ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318M-02) and Commentary (ACI 318RM-02),” American Concrete
Institute, Detroit, Michigan 48219, USA, 2002, 446 pp.

9- ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary,” American Concrete Institute, Farmington Hills, MI 48331, USA, 2011, 503 pp.
Input dimensions:
\(h, d, b, a, L_s, L_b, A_t, A_v, s_h A_{sh}, s_{th} \)

Input material properties: \(f', f_c, f_y \)

\[w_t = 2(h-d), w_s = 0.8w_t \]

\[\theta = \tan^{-1}(jd/a) \]

\[w_{sa} = L_s \sin \theta + w_c \cos \theta, w_{sa} = L_s \sin \theta + w_c \cos \theta \]

Nodal zone A: (CCT)
\(\beta_s = 0.8, f_c = 0.85f_c' \)

\[V_{n,A1} = f_c' \times L_s \times b \]

\[V_{n,A2} = f_c \times w_c \times b \times \tan \theta \]

\[V_{n,A3} = f_c \times w_{sb} \times b \times \sin \theta \]

Nodal zone B: (CCC)
\(\beta_s = 1.0, f_c = 0.85f_c' \)

\[V_{n,A1} = f_c' \times L_b \times b \]

\[V_{n,A2} = f_c \times w_c \times b \times \tan \theta \]

\[V_{n,A3} = f_c \times w_{st} \times b \times \tan \theta \]

Strut AB: (Bottle-shaped)
\[Q = \sum (A_i \times b_i) \times \sin \alpha_i \]

\[\lambda = 1.8173 (\text{d}) - 0.0143 \]

Yes

No

\[\beta_s = 0.6 \lambda \]

\[\beta_s = 0.75 \]

\[f_c = 0.85f_c' \]

\[w_{eff} = \min(w_{sa}, w_{sd}) \]

\[V_{n,AD} = f_c \times w_{eff} \times b \times \sin \theta \]

Strut BC: (Prismatic-shaped)
\(\beta_s = 1.0, f_c = 0.85f_c' \)

\[V_{n,BC} = f_c' \times L_b \times b \times \tan \theta \]

Tie AD:
\[F_{n,AD} = A_t f_c \]

\[V_{n,AD} = F_{n,AD} \times \tan \theta \]

\[V_{n,BC} = 0.83 \times b \times d \times \sqrt{f_c'} \]

\[V_{n} = \min[V_{n,A1}, V_{n,A2}, V_{n,A3}, V_{n,B1}, V_{n,B2}, V_{n,B3}, V_{n,AB}, V_{n,BC}, V_{n,AD}] \]

\[V_n = P \times d \times V_n \]

End

Fig. 3 Preliminary truss layout (struts and tie model) of deep beam.

Fig. 4 Strut-and-Tie Model for deep beams.

Fig. 5 Flow chart solution by Strut-and-Tie Model for lightweight and normalweight reinforced concrete deep beams.
Appendix A

Plate A.1- CASTM software homepage by using visual basic

Plate A.2- CASTM geometry and materials properties input page by using visual basic

Plate A.3- CASTM analysis results output page by using visual basic
Appendix B

The calculations of ultimate strength capacity of strut and tie for reinforced concrete deep beam shown in Figure B (1) are dependent on Reference (1), and are summarized as follows:

1. \(f'_{cc} = 30.8 \text{MPa}, \quad f'_{cd} = 3.11 \text{MPa}, \quad f_y = 460 \text{MPa}, \quad \lambda = 1.817 \text{f}_{cc} / f'_{cd}^{0.5} - 0.0143 = 1 \)

2. Determine if this beam satisfies the definition of a deep beam.

\[
\frac{l_n}{h} = \frac{1080}{400} = 2.7 < 4 \quad \text{or} \quad a = 420 \text{mm} < 2h = 800 \text{mm}
\]

Therefore, the member is a "deep beam." (ACI 318M-11(9), section 11.7.1)

3. A simple STM of deep beam shown in Figure B (2) is selected.

Strut BC and tie AD are required to equilibrate the truss. As shown in Figure B (3), these strut and tie form a force couple,

\[
F_{n,BC} = F_{n,AD} \quad \text{... (B1)}
\]

\[
F_{n,BC} = f_{cc} A_s = (0.85)f_{cc} f_{cd} b^* w_s \quad \text{... (B2)}
\]

where \(b_s = 1.0 \) (prismatic)

\[
F_{n,AD} = f_{cc} A_s = (0.85)f_{cc} f_{cd} b^* w_t \quad \text{... (B3)}
\]

where \(b_n = 0.8 \) (CCT node)

Substituting Equations B2 and B3 into Equation B1 gives \(w_i = 1.25w_s \), \(jd = h-w_i/2-w_i/2=400-1.125w_s \) \(\text{... (B4)} \)

\(w_i = 100 \text{ mm}, \quad w_s = 100/1.25 = 80 \text{ mm}, \quad jd = 400 - 100/2 - 80/2 = 310 \text{ mm} \)

\[
\theta = \arctan \left(\frac{jd}{a} \right) = \frac{310}{420} = 36.43^\circ > 25^\circ
\]

4. Nominal shear force \(V_n \) (ACI 318M-11(9), section A2.2):

\[
F_n = f_{cc} * A_{cs}
\]

a. Nodal Zone A: at support (CCT)

\[
f_{cc} = 0.85f_{cc}, \quad f'_{cd} = 0.85*0.8*30.8 = 20.9 \text{ MPa}
\]

\[
\text{Face A1: } V_{n,A1} = f_{cc} * L_c \quad b = 20.9*60*150/1000 = 188.5 \text{ kN}
\]

\[
\text{Face A2: } V_{n,A2} = f_{cc} * w_s \quad b^* \tan \theta = 20.9*100*150*36.43/1000 = 231.9 \text{ kN}
\]

\[
w_{sb} = w_i \cos \theta + L_s \sin \theta \quad \text{(Figure B(5))}
\]

\[
= 100 \cos 36.43 + 60 \sin 36.43 = 116 \text{ mm}
\]

Face A3: \(V_{n,A3} = f_{cc} * w_{sb} \quad b^* \sin \theta = 20.9*116*150 \sin 36.43/1000 = 216.6 \text{ kN} \)

b. Nodal Zone B: at point load (CCC)

\[
f_{cc} = 0.85f_{cc}, \quad f'_{cd} = 0.85*1*30.8 = 26.2 \text{ MPa}
\]

\[
\text{Face B1: } V_{n,B1} = f_{cc} * L_b \quad b = 26.2*60*150/1000 = 325.6 \text{ kN}
\]

\[
\text{Face B2: } V_{n,B2} = f_{cc} * w_s \quad b^* \tan \theta = 26.2*80*150*36.43/1000 = 231.9 \text{ kN}
\]

\[
w_{st} = w_i \cos \theta + L_b \sin \theta \quad \text{(Figure B (6))}
\]

\[
= 80 \cos 36.43 + 60 \sin 36.43 = 100 \text{ mm}
\]

\[
\text{Face B3: } V_{n,B3} = f_{cc} * w_{st} \quad b^* \sin \theta = 26.2*100*150*36.43/1000 = 233.2 \text{ kN}
\]

c. Strut AB: (Bottle –shaped)

(ACI318-11, section A.3.2.2), Figure B(7)

\[
f_{cc} = 0.85 f_{cc} f_c = 0.85 \text{ MPa} \]

\[
\beta_s \text{ estimated as follows,}
\]

\[
\beta_s = 0.75 \quad \text{if} \quad \sum \frac{A_{\mu i}}{b_i s_i} \sin \alpha_i \geq 0.003
\]

\[
\beta_s = 0.6 \lambda \quad \text{if} \quad \sum \frac{A_{\mu i}}{b_i s_i} \sin \alpha_i < 0.003
\]

\[
\sum \frac{A_{\mu i}}{b_i s_i} \sin \alpha_i = \frac{A_{\mu 1}}{b_{s 1} s_{s 1}} \sin \alpha_1 + \frac{A_{\mu 2}}{b_{s 2} s_{s 2}} \sin \alpha_2
\]

\[
\sum \frac{A_{\mu i}}{b_i s_i} \sin \alpha_i = \frac{A_s}{b_s s_s} \sin \alpha_s + \frac{A_n}{b_n s_n} \sin \alpha_n
\]

\[A_s = A_{sh} = 2 \cdot 32.17 = 64.34 \text{ mm}^2 , \]

\[A_n = A_{nt} = 2 \cdot 32.17 = 64.34 \text{ mm}^2 \]

\[\alpha_1 = 36.43 \quad \text{and} \quad \alpha_2 = 90 - \theta \]

s = 70 mm and s_{sh} = 75 mm

\[
\sum \frac{A_{\mu i}}{b_i s_i} \sin \alpha_i = \frac{64.34}{150} \sin 53.57 + \frac{64.34}{150} \sin 36.43
\]

\[
\sum \frac{A_{\mu i}}{b_i s_i} \sin \alpha_i = 0.00493 + 0.00396 = 0.008326 > 0.003
\]

Therefore, \(\beta_s = 0.75 \)

\[f_{cc} = 0.85 \beta_s f_c = 0.85 \cdot 0.75 \cdot 30.8 = 19.64 \text{ MPa} \]

\[w_{sb} = 116 \text{ mm}, \quad w_{st} = 100 \text{ mm}, \quad \text{therefore} \]

\[w_{eff} = 100 \text{ mm} \]

\[A_{cs} \text{ of strut AB} = w_{eff} \quad b = 100 \cdot 150 = 15000 \text{ mm}^2 \]
\[V_{n,AB} = f_{ce} \cdot A_{cs} \cdot \sin \theta = 19.64 \times 15000 \times \sin(36.43) / 1000 = 174.9 \text{ kN} \]

d. **Strut BC:** (Prismatic -shaped)

\[f_{ce} = 0.85 \beta_s f'_c = 0.85 \times 1 \times 30.8 \]
\[= 26.18 \text{ MPa} \]
\[A_{cs} \text{ of strut BD} = w_s \cdot b = 80 \times 150 = 12000 \text{ mm}^2 \]
\[V_{n,BC} = f_{ce} \cdot A_{cs} \cdot \tan \theta = 26.18 \times 120000 \times \tan(36.43) / 1000 = 231.9 \text{ kN} \]

e. **Tie AD:**

\[F_{n,AD} = A_s f_y = 600 \times 460 / 1000 = 276 \text{ kN} \]
\[V_{n,AD} = F_{n,AD} \tan \theta = 276 \times 36.43 = 203.7 \text{ kN} \]

f. **Maximum nominal shear:**

\[V_{n,\text{max}} = 0.83 b d \sqrt{f'_c} = 0.83 \times 150 \times 350 = \sqrt{30.8 / 1000} = 241.8 \text{ kN} \]

Minimum value of \(V_n = 174.9 \text{ kN} \)

Ultimate design \(V_u = \varphi V_n \]
\[= 0.75 \times 174.9 = 131.2 \text{ kN} \]

Ultimate capacity load of deep beam is \(P_u = 2 \times 131.2 = 262 \text{ kN} \)

Fig. B (1)-Reinforced concrete deep beam details

Fig. B (2) STM of a deep beam

Fig. B (3)-Free body diagram of the left half of the deep beam
$V_n = P/2$

Fig. B (4) - Deep beam cross section

$W_{sb} = 36.43$ mm

Fig. B (5) - Faces of support nodal zone A

$A_{s1} = 32.17$ mm²

Fig. B (6) - Faces of support nodal zone B

$A_{s2} = 75$ mm

Fig. B (7) - Reinforcement crossing strut AB