Semi-injectivity and Continuity
MEHDI. SADIK. ABBAS Department of Mathematics, College of Science, Al-Mustansirya University, Baghdad, Iraq

Abstract
In this paper we related semi-injectivity and quasi-continuity. Conditions are considered under which we describe semi-injectivity and continuity. Finally we studied semi-injective modules over generalized uniserial rings.

Introduction
An R-module M is quasi-injective, if each R-homomorphism of a submodule of M into M can be extended to an R-endomorphism of M [1]. V. Govorov in [2], introduced the concept of semi-injective modules as a generalization of quasi-injective modules. An R-module M is said to be semi-injective, if each R-endomorphism of a submodule of M can be extended to an R-endomorphism of M. Y. Utumi in [3] studied continuous rings as a generalization of selfinjective rings. Jeremy [4], Mohamed and Bouhy [5] and Goel and Jain [6] generalized these ideas to modules. The concept of psuedoinjective modules was introduced by Jain and singh in [7] as a generalization of quasi-injective modules. An R-module M is pseudoinjective if each R-monomorphism of a sub module of M into M can be extended to an R-endomorphism of M. H. Q. Dinh in [8] showed that every pseudo-injective extending module is continuous. In this work, we show that every semi-injective module is quasi-continuous. Recall that, a submodule N of M is closed, if N has no proper essential extension in M. several properties of closed submodules are studied in semi-injective modules. As a consequence of these properties, we show that the class of semi-injective modules is contained in that of some generalization of quasi-injective modules. A submodule N of an R-module M is stable, if \(\alpha(N) \subseteq N \) for each \(\alpha \in \text{Hom}_R(N,M) \), and M is called fully stable, in case each submodule of M is stable [9]. This is equivalent to saying that
each cyclic submodule of \(M \) is stable. It is also known that, \(M \) is a fully stable \(R \)-module if, and only if, \(\text{ann}_M(\text{ann}_R(x)) = (x) \) for each \(x \in M \) [9]. Semi-injective modules were generalized to that of Cl-semiinjective in [10]. Also we introduced some generalization of fully stable modules, namely, generalized fully stable modules. These concepts are used to established that every semi-injective generalized fully stable module is continuous. We enclosed this paper by studying semi-injective modules over generalized uniserial rings. We prove that every semi-injective module over a generalized uniserial ring is quasi-injective. Finally, we remark that all rings considered in this work are commutative with identity unless otherwise stated, and all modules are left unitary.

§ 1. SEMI-INJECTIVE MODULES AND CONTINUOUS MODULES

Let \(M \) be an \(R \)-module, \(E = E(M) \) be its injective envelope and \(S = \text{End}(E) \) be the ring of endomorphisms of \(E \). In [1], R.E.Johnson and E.T.Wong proved that \(M \) is quasi-injective if and only if, \(SM \subseteq M \). V. Govorov introduced the concept of semi-injective modules as a generalization of quasi-injective modules. An \(R \)-module \(M \) is said to be semi-injective, if for every submodules \(N \) of \(M \), each \(R \)-endomorphism of \(N \) extends to an \(R \)-endomorphism of \(M \) [2]. An \(R \)-endomorphism \(\alpha \in S \) is called essential endomorphism if \(\alpha(N) \subseteq N \) for some essential submodule \(N \) of \(M \). Let \(K_e \) be the set of all essential endomorphisms in \(S \). The following theorem appeared in [11].

Theorem (1.1): The following statements are equivalent for an \(R \)-module \(M \).

(a) \(M \) is semi-injective and \(J(S)M \subseteq M \).
(b) \(K_e M \subseteq M \), where \(J(S) \) is the Jacobson radical of \(S \).

Theorem (1.2): Let \(M \) be a semi-injective \(R \)-module. Then \(M \) is invariant under each idempotent in \(S \).

Proof: For each \(f = \text{id} \in S \), if \(x \in f(M \cap f^{-1}(M)) = f(M) \cap M \), then \(x = f(m) \in M \) for some \(m \in M \). \(f(x) = f(f(m)) = f(m) = x \), hence \(x \in M \cap f^{-1}(M) \). Therefore \(f : M \cap f^{-1}(M) \rightarrow M \cap f^{-1}(M) \) Semi-

Mustansiriya J. Sci Vol. 18, No 1, 2007

101

injectivity of \(M \) induces an \(R \)-endomorphism \(h : M \rightarrow M \).

Since \(E \) is injective, there is \(g \in S \) such that \(g(M) = h(M) \subseteq M \).

Also \((g - f)(M \cap f^{-1}(M)) = 0 \). Since \(g(M) \subseteq M \), we have \(M \cap (g - f)(M) \subseteq M \cap f^{-1}(M) \subseteq \text{Ker}(g - f) \), thus \((g - f)(M) \cap M = 0 \).

But \(M \) is an essential submodule of \(E \), then \((g - f)(M) = 0 \) and hence \(f(M) = g(M) \subseteq M \).

Corollary (1.3): Let \(M \) be a semi-injective \(R \)-module and \(E \) be its injective envelope. If \(\alpha \in S \),
\[\Lambda \in \oplus, \text{ then } M (M \in E) \alpha \alpha = \oplus \cap \in \Lambda. \]

Proof: For each \(\alpha \in \Lambda \), let \(\pi_\alpha : E \rightarrow E_\alpha \) be the natural projection of \(E \) onto \(E_\alpha \). Theorem (1.2) implies that \(\pi_\alpha (M) \subseteq M \) for each \(\alpha \in \Lambda \), hence \(M \pi (M) (M E_\alpha) \subseteq M. \)

Y. Utumi in [3] introduced continuous ring as a generalization of self-injective rings. These concepts of continuity and quasi-continuity were extended to modules by L. Jeremy [4], S. Mohamed and T. Bouhy [5], V. Goel and S. K. Jain [6]. The notion of quasi-continuous modules which effectively extends that of continuous modules seems now more fundamental. An R-module \(M \) is said to be continuous if (a) every closed submodule of \(M \) is a direct summand of \(M \) and (b) every submodule of \(M \) which is isomorphic to a direct summand of \(M \) is a direct summand of \(M \). An R-module \(M \) is called quasi-continuous, if \(M \) has condition (a) and condition (c): for any direct summands \(P, N \) of \(M \) with \(P \cap N = 0 \), \(P \oplus N \) is also a direct summand of \(M \). Its well-known that, injectivity \(\rightarrow \) quasi-injectivity \(\rightarrow \) continuity \(\rightarrow \) quasi-continuity.

For semi-injective, we have the following theorem (1.4): Every semi-injective module is quasicontinuous.

Proof: Let \(M \) be a semi-injective R-module. To prove condition (a), it is enough to show that, every submodule of \(M \) is essential in a direct summand of \(M \)[12]. If \(N \) is any submodule of \(M \), then \(E(M) = E(N) \oplus K \) for some submodule \(K \) of \(E(M) \). Corollary (1.3) implies that \(M = (M \cap E(N)) \oplus (M \cap K) \), \(N \) is an essential submodule of \(M \cap E(N) \). For condition (c), let \(K \) and \(L \) be direct summands of \(M \) with \(K \cap L = 0 \). Then \(E(N) = E(K \oplus L) \oplus E = \oplus E(K) \oplus E(L) \oplus E \) for Semi-injectivity and Continuity.

Mehdi S.

102

some submodule \(E \) of \(E(M) \). Since \(K \) and \(L \) are direct summands and essential in \(M \cap E(M) \) and \(M \cap E(L) \) respectively. This completes the proof.

Proposition (1.5): Let \(M \) be a semi-injective R-module. If \(N_1 \) and \(N_2 \) are submodules of \(M \) with \(N_1 \cap N_2 = 0 \), then there exist
submodules
M_1, M_2 of M such that $M=M_1 \oplus M_2$ and $N_i \subseteq M_i$ ($i=1,2$).
Proof: By theorem(1.4), there exist submodules K_1 and K_2 of M such that N_i is essential in K_i ($i=1,2$). Clearly, $K_1 \cap K_2 = 0$.
Again theorem(1.4) implies that $K_1 \oplus K_2$ is a direct summand of M, hence $M = K_1 \oplus K_2 \oplus K$ for some submodule K of M. Note that, $N_i \subseteq K_1$ and $N_i \subseteq K_2 \oplus K$.

Lemma(1.6): Let M_1 and M_2 be R-modules and $M = M_1 \oplus M_2$. If L_i is a closed submodule of M_i ($i=1,2$), then $L_1 \oplus L_2$ is a closed submodule of M.
Proof: Let K be an essential extension of $L_1 \oplus M_2$ in M. Then $M_2 \subseteq K$ implies that $K = K \cap M = (K \cap M_1) \oplus M_2$. Now $L_1 = (L_1 \oplus M_2) \cap M_1$ is essential in $K \cap M_1$, hence $L_1 = K \cap M_1$ and $L_1 \oplus M_2 = K$. Thus $L_1 \oplus M_2$ is closed in M. Similarly, $L_1 \oplus L_2$ is closed in $L_1 \oplus M_2$, thus $L_1 \oplus L_2$ is closed in M.
The proof of the following corollary follows from lemma (1.6) and theorem (1.4)

Corollary (1.7): Let M be a semi-injective R-module. If N_1 and N_2 are closed submodules of M with $N_1 \cap N_2 = 0$, then $N_1 \oplus N_2$ is a closed submodule of M.
The following corollary shows, that the class of semiinjective modules is contained in that of some generalization of quasi-injective modules.

Corollary (1.8): Let M be a semi-injective R-module. If N_1 and N_2 are closed submodules of M with $N_1 \cap N_2 = 0$, then each R-homomorphism $f: N_1 \oplus N_2 \to M$ can be extended to an R-endomorphism of M.

Recall that, an R-module M is said to be quotient essential noetherian (Simply QEN), if each ascending chain $L_1 \subseteq L_2 \subseteq \ldots$ of M with L_{i+1}/L_i is essential in M/L_i for each i, there is a positive integer n_0 such that $L_n = L_{n+1}$ for all $n \geq n_0$. A Al- Mustansiriya J. Sci Vol. 18, No 1, 2007 103

ring R is QEN ring if it is QEN R-module. The following was proved in [11]: if R is a QEN ring, then M is a semi-injective R-module if and only if, M is invariant over K_e.

We note that, semi-injectivity is not closed under submodules, see example(1.13). But in theorem(1.4), we show that closed submodules, inherit semi-injectivity. In this regard we consider certain conditions under which each proper cyclic submodule of a semi-injective module is semi-injective.

First, we need the following lemmas.
Lemma(1.9): Let M be an R-module and $x \in M$. If E is R-injective
envelope of $\mathbb{R}/\text{ann}^{\mathbb{R}}(x)$, then $E_1=\text{ann}^{\mathbb{E}}(\text{ann}^{\mathbb{R}}(x))$ is the $\mathbb{R}/\text{ann}^{\mathbb{R}}(x)$-injective envelope of $\mathbb{R}/\text{ann}^{\mathbb{R}}(x)$.

Proof: write $H=\text{ann}^{\mathbb{R}}(x)$. To show that E_1 (as R/H-module) is an essential extension of R/H, if y is a non-zero element in E_1, then $y\in E$ and $Hy=0$. Since E is an essential extension of R/H (as R-module), then there is $r(\neq 0)$ in R such that $ry(\neq 0)\in R/H$. Thus $Hr\in R/H$ and $(Hr)y \neq H$, hence E_1 is an essential extension of R/H. For each ideal I of R/H and R/H-homomorphism $\alpha : I \to E$

- Define $\alpha : I \to E$
- (where $I=I/H$)
- by $(i)(iH)$
- $\alpha = \alpha$ where $(\) = 0$
- $\alpha iH H$ for each $i \in I$. It is a matter of checking that α is well-defined R-homomorphism. Injectivity of E implies that there is $e \in E$ such that for each $w \in I$, $\alpha (w)=we$. Now $He=Hwe$.

Lemma (1.10): Let M be an R-module and I be an ideal of R. If M is a semi-injective R/I-module, then M is a semi-injective R-module. Conversely, if M is a semi-injective R-module such that $I \subseteq \text{ann}(M)$, then M is a semi-injective R/I-module.

Proof: The relation $(r+I)m=rm$ for each $r \in R$ and $m \in M$ is used in each case to define M as a module over R (or R/I) where is given as a module over R/I (or R). It is then easy to see that the concepts of submodules and endomorphisms coincide over each ring.

Semi-injectivity and Continuity
Mehdi S.

Theorem (1.11): Let M be a uniform module over \mathbb{QEN} ring R. Then the following statements are equivalent
(1) M is a fully stable R-module.
(2) $R/\text{ann}^{\mathbb{R}}(x)$ is self semi-injective ring for each $x \in M$.
Each proper cyclic submodule of M is semi-injective.

Proof: (1) → (2): Since M is uniform, then for each $x \in M$, the cyclic submodule (x) is essential in M. Hence $E(R/\text{ann}_R(x)) \cong E(x) = E(M) = E$. By lemma (1.9), $E = \hat{\text{ann}}_E(\text{ann}_R(x))$ is the injective envelope of $R/\text{ann}_R(x)$ as $R/\text{ann}_R(x)$-module. Since M is fully stable, then $(x) = \text{ann}_M(\text{ann}_R(x)) \supseteq \text{ann}_E(\text{ann}_R(x))$, thus $E = \hat{\text{ann}}_E(\text{ann}_R(x)) = (x) = R/\text{ann}_R(x)$, so $R/\text{ann}_R(x)$ is the injective envelope of $R/\text{ann}_R(x)$ as $R/\text{ann}_R(x)$-module. Therefore $R/\text{ann}_R(x)$ is self-injective (and hence self-semi-injective) ring.

(2) → (3): For each $x \in M$, if L is a submodule of (x) and $f: L \to L$ is an R-endomorphism, then $\text{ann}_R(x) \subseteq \text{ann}_R(L)$ that is, L is annihilated by $\text{ann}_R(x)$. Lemma (1.10) implies that L is an $R/\text{ann}_R(x)$-module. There exists an R-endomorphism g of $R/\text{ann}_R(x)$ which extends f to (x). Thus (x) is a semi-injective R-module.

(3) → (1) Let (x) be any cyclic submodule of M and $\beta: (x) \to M$ be an R-homomorphism. Since M is uniform, then $E(x) = E(M)$. Injectivity of $E(M)$ implies that, there exists $\gamma: E(x) \to E((x))$. But $E(M)$ is uniform, then $\ker(\gamma)$ is essential in $E(M)$, thus $\gamma \in J(\text{End}_R(E(M)))$. Since $J(\text{End}_R(E(M))) \subseteq K_\epsilon$, thus $\gamma \in K_\epsilon$. By (3), (x) is semi-injective R-module, then $\gamma((x)) \subseteq (x)$ and hence $\beta((x)) \subseteq (x)$. Therefore M is fully stable.

Corollary (1.12): Every uniform fully stable module over noetherian ring is semi-injective.

Example (1.13): The following lemma was proved in [13]: Let M be an R-module whose lattice of submodules is ω. Then M is a fully stable R-module but not semi-injective [11]. R. Hallett in [14] gives an example of module which satisfies the conditions of the above lemma. This example shows that the uniform property of the module in corollary (1.2) is essential. Further, $E(M)$ is semi-injective and M as a submodule of $E(M)$ is not semi-injective. The converse of corollary (1.12) is not true in general, for example, the ring \mathbb{Z} of integers is uniform semi-injective but not fully stable [9].

In this part we investigate the following concept to clarify the relation between semi-injective module and continuous modules.

First, we recall that an R-module M is called CI-fully stable, if for each closed submodule C of M, $\alpha(C) \subseteq C$ for each R-homomorphism $\alpha: M \to M$. Where N_1 is not isomorphic to N_2, then M is a fully stable R-module [9] but not semi-injective [11]. R. Hallett in [14] gives an example of module which satisfies the conditions of the above lemma. This example shows that the uniform property of the module in corollary (1.2) is essential. Further, $E(M)$ is semi-injective and M as a submodule of $E(M)$ is not semi-injective. The converse of corollary (1.12) is not true in general, for example, the ring \mathbb{Z} of integers is uniform semi-injective but not fully stable [9].
Definition (1.14): An R-module M is called a generalized fully stable if for each closed submodule N of M which is isomorphic to a closed submodule of M, \(\alpha(N) \subseteq N \) for each \(\alpha \in \text{Hom}_R(N,M) \).

It is clear that every generalized fully stable module is Cl-fully stable.

Lemma (1.15): Let M be a generalized fully stable R-module and \(C_1, C_2 \) be two submodules of M with \(C_1 \) is a closed in M. If \(C_1 \neq C_2 \), then \(C_1 \) is not isomorphic to \(C_2 \).

Proof: Suppose that M has two distinct submodules \(C_1 \) and \(C_2 \) with \(C_1 \) is closed in M which are isomorphic. Let \(\theta \) be the given isomorphism. No loss of generality, if we assume that \(C_1 \not\subseteq C_2 \), then there is a non-zero element \(x \in C_1 \) and \(x \notin C_2 \). Consider the following two homomorphisms

\[i_2 \circ \theta : C_1 \rightarrow M \text{ and } i_1 \circ \theta : C_2 \rightarrow M \]
where \(i_1, i_2 \) are the inclusion mapping of \(C_1 \) and \(C_2 \). Since M is a generalized fully stable module, then

\[i_1 \circ \theta \circ (i_2 \circ \theta)(x) \in C_2 \]
which is a contradiction.

Semi-injectivity and Continuity

106

An R-module M is called Cl-semi-injective, if each Rendomorphism of a closed submodule of M extends to an Rendomorphism of M [10].

Theorem (1.16): Let M be a Cl-semi-injective generalized fully stable R-module and \(T=\text{End}_\alpha(M) \). If \(I=\{\alpha \in T | \ker(\alpha) \text{ is essential in } M\} \), then \(T/I \) is a Von Neumann regular ring.

Proof: For each \(g \in T-I \), there exists a non-zero submodule A of M such that \(A \cap \ker(g)=0 \). By Zorn’s lemma, let B be a maximal submodule of M with the property \(B \cap \ker(g)=0 \). Then \(M_0=B \oplus \ker(g) \) is an essential submodule of M. Now, B being a direct summand and hence is a closed submodule of \(M_0 \). We claim that B is a closed submodule of M. Let N be a submodule of M with \(B \) is essential in N. Then \(B \subseteq M_0 \cap N \), and hence B is an essential submodule of \(M_0 \cap N \). Closeness of B in \(M_0 \) implies that \(B=M_0 \cap N \). Suppose that \(N \cap \ker(g) \neq 0 \), then \(0 \neq N \cap \ker(g) \cap M_0=B \cap \ker(g) \). which is a contradiction, so \(N \cap \ker(g)=0 \). Maximality of B implies that \(B=N \).

Write \(g_0(=g|_B) : B \rightarrow B \), since M is generalized fully stable, \(\ker(g_0)=B \cap \ker(g)=0 \), thus \(g_0 \) is an R-monomorphism, so \(B=g_0(B) \). By lemma (1.14), \(g_0(B)=B \). Now, the corresponding \(\alpha : g_0(B) \rightarrow g_0(B) \) given by \(\alpha(g_0(b))=b \) is well-defined R-endomorphism. Cl-semi-injective of M implies that there exists \(f \in T \) which is an extension of \(\alpha \). Let
b+y \in M_0 \text{ where } b \in B \text{ and } y \in \ker(g). \ (g-gfg)(b+y)=g(b)-gfg(b)=g(b)-g(b)=0, \text{ then } M_0 \subseteq \ker(g-gfg) , \text{ hence } (g-gfg) \in I. \text{ Thus } T/I \text{ is regular.}

Corollary(1.17): Let M be a CI-semi-injective generalized fully stable R-module and T=\text{End}_R(M). \text{ Then } J(T)=\{ \alpha \in T \mid \ker(\alpha) \text{ is essential in } M \} \text{ and } T/J(T) \text{ is regular.}

Theorem(1.18): Every semi-injective generalized fully stable R-module is continuous.

Proof: Let M be a semi-injective generalized fully stable R-module.
By theorem(1.4), M is quasi-continuous. On the other hand, if we write T=\text{End}_R(M), \text{ then corollary(1.17) implies that } J(T)=\{ \alpha \in T \mid \ker(\alpha) \text{ is essential in } M \} \text{ and } T/J(T) \text{ is regular.} \text{ Thus } M \text{ is a continuous R-module, ([12], proposition(3.15)).}

§2. SEMI-INJECTIVITY VERSUS QUASI-INJECTIVITY
In this section we study semi-injective modules over generalized uniserial rings. First, we recall some concepts and results.

Let \(M = \bigoplus_{\Lambda} M_i \) be a direct sum of R-modules \(M_i \) and \(E(M) = \bigoplus_{\Lambda} E_i \), consider the following set \(K_{ij} = \{ \alpha \in \text{Hom}_R(E_i, E_j) \mid \alpha(N_i) \subseteq N_j \text{ for some essential submodule } N_i(N_j) \text{ of } M_i(M_j) \} \).

The following theorem is proved in [15].

Theorem(2.1): Let R be a noetherian ring and \(M = \bigoplus_{\Lambda} M_i \) be any direct sum of R-modules \(M_i \). Then M is semi-injective if, and only if, \(K_{ij} \subseteq M_j \text{ for each } i, j \in \Lambda \).

An artinian ring R is said to be generalized uniserial, if for every primitive idempotent \(e \) of R, Re has a unique composition series as R-module. These rings were called serial by Eisebud Griffitt [16]. An R-module M of finite composition length is said to be uniserial, if it has a unique composition series. This is equivalent to saying that, all submodule of M are linearly ordered with respect to inclusion.

Theorem(2.2): (Nakayama). Let R be a generalized uniserial ring. Then every R-module is a direct sum of uniserial modules.
Nakayama's theorem says that, any indecomposable module over a generalized uniserial ring is uniserial. Let M and N be two indecomposable semi-injective modules over a generalized uniserial ring R and $E(M)$, $E(N)$ be their injective envelopes. By using corollary(1.3), it is an easy matter to see that $E(M)$, $E(N)$ are indecomposable uniserial R-modules. Let $m(E(M), E(N))$ denote the submodule of $E(M)$ which is minimal among the kernels of all R-homomorphisms σ of $E(M)$ into $E(N)$ with $\sigma(M) \subseteq N$ for some essential submodule $M(\subseteq N)$ of $M(\subseteq N)$. As $E(M)$ is uniserial, $m(E(M), E(N))$ is well-defined and unique. Note that, $m(E(M), E(N))=0$ if, and only if, there is an R-monomorphism of $E(M)$ into $E(N)$.

In the following theorem we characterize semi-injective modules over generalized uniserial rings.

Theorem (2.3): Let M be a module over a generalized uniserial ring R. Then M is semi-injective if, and only if, $M=\bigoplus_{i \in \Lambda} N_i$ where N_i are uniserial modules and $l(N_i) \leq l(N_j) + l(m(E(N_i), E(N_j)))$ for all $i, j \in \Lambda$.

Proof: By theorem (2.2), $M=\bigoplus_{i \in \Lambda} N_i$ where the N_i's are uniserial modules. Since R is noetherian, then $E(M)=\bigoplus_{i \in \Lambda} E(N_i)$[17]. For convenience, let as write E_i for $E(N_i)$, then theorem (1.2) implies that M is semi-injective if, and only if, $\sigma(N_i) \subseteq N_j$ for all $\sigma \in K_{ij}$. Now, let M be a semi-injective R-module and $\sigma : E_i \rightarrow E_j$ with $\sigma(N_{i \sigma}) \subseteq N_{j \sigma}$ for some essential submodule $N_i(\subseteq N_j)$ of $N_i(\subseteq N_j)$ and $\ker(\sigma) = m(E_{i \sigma}, E_{j \sigma})$. Since E_i is uniserial, then either $N_i \subseteq m(E_i, E_j)$ or $N_i \supseteq (E_i, E_j)$. If $N_i \subseteq m(E_i, E_j)$, then obviously $l(N_i) \leq l(N_j) + l(m(E(N_i), E(N_j)))$. Otherwise, we must have $m(E_i, E_j) \subseteq N_i$, then $N_i / m(E_i, E_j) = \sigma(N_i) \subseteq N_j$ gives $l(N_i) \leq l(N_j) + l(m(E(N_i), E(N_j)))$. Conversely, let $l(N_i) \leq l(N_j) + l(m(E(N_i), E(N_j)))$ for all $i, j \in \Lambda$. For each $\alpha \in K_{ij}$, the minimality implies that $m(E_i, E_j) \subseteq \ker(\alpha)$. Thus using the inequality we immediately get $\alpha(N_i) \subseteq N_j$. Hence M is semi-injective.

We consider the following chain condition on a ring R relative
to a given family of R-modules $\{M_{\alpha} | \alpha \in \Lambda \}$ [12].

(*) For every choice of $x \in M_{\alpha}$ ($\alpha \in \Lambda$) and $m_i \in M_{\alpha}$. For distinct $\alpha \in \Lambda$ ($i \in \mathbb{N}$) such that $\text{ann}_R(x) \subseteq \text{ann}_R(m_i)$, the ascending sequence $n_i \geq \cap \text{ann}_R(m_i)$, $(n \in \mathbb{N})$ becomes stationary.

We need the following two results which appear in [12].

Proposition(2.4): The following statements are equivalent for a direct sum decomposition of a module $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$.

1. M is quasi-continuous.
2. αM is quasi-injective for every $\beta \in \Lambda \setminus \{\alpha\}$.
3. αM is quasi-injective for all $\alpha, \beta \in \Lambda$ and condition (*) holds.

Proposition(2.5): Let $\{ \alpha M | \alpha \in \Lambda \}$ be a family of quasi-continuous modules. Then the following statements are equivalent.

1. $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ is quasi-continuous.
2. βM is quasi-injective for every $\beta \in \Lambda \setminus \{\alpha\}$.

The relation between quasi-injectivity and semi-injectivity was studied in [11]. In fact, we established condition versus semi-injectivity to quasi-injectivity. In particular, we proved that every semi-injective module M over a QEN ring with non-zero socle $S(M)$ is quasi-injective [11]. In this direction we have the following.

Theorem(2.6): Every semi-injective module over a generalized uniserial ring is quasi-injective.

Proof: Let M be a semi-injective module over a generalized uniserial ring R. By theorem(2.3), $M = \bigoplus_{i \in I} M_i$ where the M_i's are uniserial modules and $|M_i| \leq |M_j| + |E(M_i)E(M_j)|$ for all $i, j \in I$. Theorem(1.4) implies that M is quasi-continuous and hence M_i is quasi-continuous for each $i \in I$. Thus M_j is M_i-injective for every $j \in I - \{i\}$ and condition (*) holds, proposition (2.5). Now, for each $i \in I$, as M_i is uniserial, then M_i is uniform. Thus M_i has non-zero socle. Since R is noetherian, hence R is QEN ring. Then M_i is quasi-injective for each i. Proposition (2.4) implies that M is quasi-injective.

The following corollary is a consequence of theorem(2.6) and theorem(1.18).

Corollary (2.7): Let M be a generalized fully stable module over a
generalized uniserial ring R. Then M is a semi-injective R-module if, and only if, M is a continuous R-module.

Theorem(2.8): Any torsion semi-injective module over a Dedekind domain is quasi-injective.

Proof: Let N be a submodule of a torsion semi-injective module over a Dedekind domain R, and σ : N → M be an R-homomorphism. As an application of Zorn’s lemma, we can assume that σ can not be extended to any submodule N of M containing N properly. We claim that N=M. Let x be an element of M with x ∉ N. Now, annR(x) is an essential ideal of R. Let L=annM(annR(x)). Then L is a submodule of M which contains (x). Thus L is a module over a generalized uniserial ring R/annR(x). As L is a stable submodule of M, then L is also a semi-injective R/annR(x)-module[2]. Hence theorem(2.6) implis that, L is a quasi-injective R/annR(x)-module and hence R-module.

Semi-injectivity and Continuity

Mehdi S.

Define λ : N ∩ (x) → L by λ (z)= σ (z) for each z∈N ∩ (x), since L is a stable submodule of M. As (x) ⊆ L, λ can be extended to an R-homomorphism λ * of L. Define σ * : N+(x) → M by σ *(n+rx)= σ (n)+ λ *(rx). Then σ * is well-defined R-homomorphism and is a proper extension of σ. This is a contradiction. Therefore M is quasi-injective.

REFERENCES

6- Goel V. K and Jain S.K., π -injective modules and rings whose cyclic modules are π - injective, comm. Algebra 6, 59-73 (1978).