Detection of the genetic stability for the tissue tomato plants by using RAPD technique

Abstract:

The Randomly Amplified Polymorphic DNA (RAPD) markers were used to confirm the genetic stability for two hybrids of tomato: Shorouk and GS-12 produced from plant tissue culture which produced from synthetic seeds were selected and randomly assigned to three treatments as well as the control treatment which included plantlets developing from the tomato seeds planted on the sterile filter paper and moisturized with sterile distilled water.

RAPD-PCR analysis using 5 universal primers were performed on DNA extraction from the fresh healthy leaves of the mother plants and from samples randomly taken plantlets derived from tissue culture for both tomato hybrids. Results have been obtained by using the primer OPC-O3 which elect out of five primers confirmed the resemblance among the tissue culture seedlings which grown from synseeds (synthetic seeds) as well as with those grown from natural seeds, furthermore RAPD appears to be an efficient technique and a simple fast DNA marker for the early detection of genetic variation in plants produced by tissue culture technique.
جامعه كربلاء // المؤتمر العلمي الثاني لكلية الزراعة 2012

في مجال تكاثر النباتات لنباتات الطماطه.

Lycopersicum Esculentum Mill.

الناتجة من زراعه الأنسجة، استخدمت

RAPD مؤشرات الأشجار. في الكتاب من التغييرات النباتية التي تم تحصل على دراسة خارج الجسم الحي من خلال مقاير تحليل

نتائج البصمة النباتية لنباتات النسيجية مع النباتات النماذج في نفس السن، إذ قام كل من (3)، (4) بتوظيف مُؤشرات الأشجار (RAPD) للتحقق من مدى مطابقة نباتات الزراعة المنتجة من طرقية في نوع البذور عبير البذور مع بإدراة الطماطه النامية في الحقل، وأظهرت النتائج عدم وجود تفاوتات وراثية، كذلك لاحظ (5) التحقج النباتات النباتية الناتجة من كونك الأجنة

الجسمية عبر البذور خارج الجسم الحي مع بذورات نفس الأنسجة النامية في الحقل.

وفي مجال توحيد النباتات الأشجار (Genetic similarity) بين النباتات الأم والنباتات الناتجة من تكوين الأنبات الجسمية غير المغ(elm). قد تراوح بين (83-98) اعتماداً على التراكيب الوراثية. وفي المجال للتحقق من النباتات النباتية لنباتات الخليل المنتجة من البراعم العرضية المكتوبة على RAPD نفسه، استمرر (7) مُؤشرات الأشجار (RAPD) كالكثير صينيين من الخليل لها البرنح والمكون، وقد أظهرت تأثير النباتات النباتية في نبات "ناما" في طرقية توزيع الجزم لسعة عشر بذوراً من أول شعرين بذوراً وصنفية الدراسة، واستنتجنا أن مُؤشرات الأشجار (RAPD) تظهر ارتفاع التفوق الوراثي في النباتات النباتية التي تم تحقيده في نباتات خليل التم الفتقة من زراعه الأنسجة النباتية.

واستخدمت هذه مُؤشرات الأشجار للكشف عن التغييرات النباتية في النباتات الطبيعة المنتجة خارج الجسم الحي، إذ قام (8) بدراسة النباتات الأشجار (Cineraria maritima) لنباتات النباتات النباتية من البذور الصناعية مع بذورات النباتات النادمة في الحقل. ولاقروننا تطابق هذه النباتات وراثياً بنسبة زادت عن (94)، وكذلك أكد (9) على التحقج النباتات الأشجار (Ochroleucales missionis) بالطرق التثقيدية.

المواضيع وطرق العمل:

نفت هذه الدراسة في مختبر قسم القياسات الإجهاضية التابع لكلية العلوم الطبية/ جامعة بوزنان، بولندا. للقترة من تشرين أول 2009/ لاغانسني 2010.

اختبرت النباتات النسيجية النامية من البذور الصناعية التي تضم الأنبات الجسمية وشبك عدواني لكل من المعاملات المدرجة أدناه في جدول (1) لمحجي الطماطه: الشروق و 12-GS وذلك بعد أسبوعين من زراعتها على وسط الخليه الحالي للهرمونات.

جدول (1)

لاستخلاص الفنادن:

1. عزلت المادة الوراثية (DNA) من الأوراق الفتيات الخضراء للمعالاهم المذكورة أعلاه وفقاً لطريقة (10) وكما يلي:

أخبر 1 غم من الأوراق الفتيات الخضراء وسحقها بسرعة في هواز خرف من مزدوج مكدس بإضافة السكر الوراثي السائل بكمية مناسبة وأستمر السحق بإضافة كميات أخرى حتى أصبحت الأوراق على شكل مسحوق أبيض ناعم.

2. نقل المحمولة إلى أنابيب بلاستيكية بعما 20،3 المسمى 3.0 مبسط عليه 3.0 من معامل الاستخلاص ومضجع بسرعة جيدة مع المحمولة وحضنت العينة على درجة حرارة 60°C لمدة 60 دقيقة. ورفعت الأنابيب البلاستيكية وجرت إلى درجة حرارة 70°C. ومضجع للكلي البلوروفوم / أيزوميل مع تحرص

الأنسبية لمدة 15 دقيقة.

209
جامعة كربلاء // المؤتمر العلمي الثاني لكلية الزراعة 2012

4. وضعت الأنزيم البلاستيكية التي تحوي المزيج:Bجهزة النبذ المركزي وسرعة 9000 دورات/دقيقة لمدة 10 دقائق وبدرجة حرارة 40° C.

5. عزلت الطبقات العليا بعد نهاية عملية النبذ المركزي ونقلت إلى أنزيم بلاستيكية جديدة؛ أضيف 5 مللي متر من الأوزوبراندول المبرد لكل عينة لترسيب الدنا الذي ظهر على شكل خطط بيضاء وترك للنوم التالي لإتمام عملية الترسيب.

6. نبذ المزيج بجهزة النبذ المركزي سرعة 9000 دورات/دقيقة لمدة 15 دقيقة.

7. تم التخلص من الجزء الرائع (الكوكول المذاب بالماء) وعمل الدنا بالكوكول الأثلي تركز 99%; جففت الأنزيم في فرن على درجة حرارة 50° C لمدة 15 دقيقة للنحاز من الكوكول المتبقي. أضيف 0.5 مللي متر من محلول TE buffer المتصق بجدران الأنزيم.

8. تم التخلص من RNA المنترسب مع الدنا بإضافة 4 مللي متر من إنزيم RNAse على درجة حرارة 37° C لمدة 30 دقيقة، ثم رفعت العينات من الحرارة وأضيف لها 90 مللي متر صوديوم أسيتات لترسيب وتنظيف الدنا، بعدها أضيف 2 مللي متر من كحول الإيثانول (99%) البارد جداً لجمع الدنا ووضع في جهاز الطرد المركزي (10000 دورة/دقيقة) لمدة 30 دقيقة. أعيدت عملية الغسل بالأيثانول (75%) وجففت العينات في جهاز Vacuum oven.

9. جلفت عينات الدنا الدائر إلى أنزيم بلاستيكية ذات غطاء محكم سعة 1.5 مللي متر وحفظت العينات على شكل Eppendorf tubes

10. حضرت نموذج الدنا الألكروم (0.7%) للعينات الدنا المغذول، وبعد تصفيف وزعت العينات على الحر واغلق جهاز UV-spectrophotometer الترجل وبعد ثلاث ساعات من بدء الترجيل فحص البيلام باستخدام جهاز قياس الكثافة الضوئية طول موجي 260 نانومتر لروية جزء الدنا.

RAPD: تحضير تفاعلات

OPA-05, OPA-08, OPB-06, OPB-08, OPC 03 لمعرفة أي منها تعود "شكلا" قدرت الأحجام الجزيئية للقطع المضاعفة بالأتمام على مواقع الحزم ذات الأحجام الجزيئية المعروفة الناتجة من قطع دنا الدليل الحجمي القياسي. رسم المنحنى القياسي بعنق الإحجام الجزيئية للدليل الحجمي الممثلة على المحور الصادي وقيمة المسافات التي تبعد هذه الحزم عن حفر تحكمها داخل البيلام الممثلة على المحور البياني. قبض المسافة التي قطعتها كل حزمة (القطع المضاعفة) من حزم العينات المغذول. وسبيط عمود من تلك المسافة على المنحنى القياسي، ومن نقطة التقاطع هذه، أسقط عمود آخر على المحور الصادي ليمثل حجم القطة المضاعفة(12).
جامعه كربلاء // المؤتمر العلمي الثاني لكلية الزراعة 2012

النتائج والمناقشة:

استخلاص الدنا:

عزل الدنا الكلي واستخلاص من الأوراق القتية النامية من معاملات هجيني الطماطة المدروسين، والتي اشتملت على المعاملات المذكورة في أعلاه، باستخدام مادة CTAB في محلول الإستخلاص، بوجب طريقة (10) ومن خلالها حصلنا على كمية كافية من الدنا لإجراء عملية الترميل الكهربائي على هلام الأكرورز، ونلاحظ إن كل مادة من المواد التي استخدمت في عزل الدنا واستخلاصه تعمل على إزالة إحدى مواد الخلية غير المرغوب فيها ونفس الوقت لا تسبب ضرراً، لتمزيز جدر خلايا النباتات بسماكة لذا فإن تحضير الخلايا يتم باستخدام السحق البديو بوجود الترميل السائل إذ تمثل درجات الحرارة المخفضة على أيقاف نشاط الأنزيمات النووية والتي تتحري مباشرة بعد تحضير الجدار الخلوي (13).

Nucleic Acids

CTAB Complex

إن وجود مادة CTAB في محلول الاستخلاص يعمل على تكوين معدق مع المواد النووية

هذه مادة CTAB Complex والتي تعد عاملًا مخلبًا EDTA

الأنزيمات النووية التي تعمل على تحلل الأحماض النووية وبالتالي تكثيف عمل تلك الأنزيمات (14).

ويؤدي الكلوروروم دوراً مهماً في التخلص من الأنزيمات النووية

والصحة الدنا في المرحلة التالية من عملية الاستخلاص فقطًا عن تخلصها من السكريات المتعددة والمواد الأخرى في الخليت مثل الكلوروفيل بمساعدة النبذة الطري، في حين يمنع كبح الأشعة تحت الحمراء الرؤية أثناء عملية الاستخلاص من خلال تقليله لفعالية الشد السطحي للمواد الداخلية في عملية الاستخلاص.

وبهذا يحمي كلوروروم الدنا من تحلل الفيروسية من خلال توفير الامدوزية المناسبة له، وذالك يقي الدنا بالطور المائي ويرسب بواسطة كبح الأيزوبروبوان المبرد، فن فن بعد الدنا المترسب من بقايا الماء والمواد الأخرى

إما مادة mercaptoethanol ومنع أكسمة المواد الفينولية وظهور اللون البني في

DNase المستقل (15).

تفاعلات RAPD:

بيت النتائج أن البادات الأربعة (OPA-05, OPA-08, OPB-06, OPB-08) في حين أعتز البادئ OPC-03 تضاعةً جداً وليست كلاً هجيني الطماطة قد يد ادرس، علاً أن اختبار هذا البادي

كررت تجربته ثلاث مرات وثانية من صحة تناجيه بيبين الجدولين 3 و 3 و 1 و 2 عدد الحزم الناجحة والمسافة التي قطعتها وأحجام الجزيئية المقدرة لعينات الدنا لمعاملات هجيني الشروق و CTAB باستخدام البادئ

3

1900 صاط هبد سطح 4 مل، ولاحظ اكتمل ثلاث نقاط عند تحليل مقاربة النتائج للعينات

مترسي، وهي:

ظرز الحزم نظير نتائج الجدول 2 والشكل 1 ان أنيت الدنا للمعاملات 2, 3, 4 فضلاً عن معاملة المقارنة (1) لهجين

1. ظهرت الحزم. نظير نتائج الجدول 2 والشكل 1 ان أنيت الدنا للمعاملات 2, 3, 4 فضلاً عن معاملة المقارنة (1) لهجين

2. ظهرت الحزم. نظير نتائج الجدول 2 والشكل 1 ان أنيت الدنا للمعاملات 2, 3, 4 فضلاً عن معاملة المقارنة (1) لهجين

3. ظهرت الحزم. نظير نتائج الجدول 2 والشكل 1 ان أنيت الدنا للمعاملات 2, 3, 4 فضلاً عن معاملة المقارنة (1) لهجين
الشكل 1: النتائج المتضاعفة من الدنا الكلي لمعاملات هجين الشروق المختلفة المتمثلة بـ DNA ladder.

M: الدليل الحجمي القياسي المتمثل بـ 100bp DNA ladder.

1: معاملة المقارنة (عينات من نباتات نامية من بذور طبيعية مزروعة على ورق ترشيح معقم ومرطب بالماء المجفف للساق).
2: نباتات نامية من بذور صناعية مخزنة مدة شهر في درجة 4م° (سبق وأن جرى تجويز حشواتها بالـ SA 2%) و CaCl2 (12 ملم/لتر) و BA (0.05ملم/لتر) و IBA (0.01ملم/لتر).
3: نباتات نامية من بذور صناعية مجهزة بالـ SA 2% (CaCl2 12 ملم/لتر، BA 0.05ملم/لتر، IBA 0.01ملم/لتر).
4: نباتات نامية من بذور صناعية مجهزة بالـ SA 2% (CaCl2 12 ملم/لتر، BA 0.05ملم/لتر، IBA 0.01ملم/لتر).
جامعة كربلاء // المؤتمر العلمي الثاني لكلية الزراعة 2012

جدول 2: عدد الحزم الناتجة والمسافة التي قطعتها (ملم) وإحجامها الجزئي المقدرة لعينات الدنا لمعاملات هجين الشروق باستخدام البادئ OPC-03.

<table>
<thead>
<tr>
<th>الحجم الجزئي (bp)</th>
<th>المسافة المقطوعة (ملم)</th>
<th>المعاملة</th>
<th>عدد الحزم</th>
</tr>
</thead>
<tbody>
<tr>
<td>1825</td>
<td>60</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1825</td>
<td>60</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1825</td>
<td>60</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td>56</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

213
أما بالنسبة للهجين GS-12، فإن النتائج المتضاعفة من الدنا الكلي لمعاملات هجين GS-12 المختلفة المتمثلة DNA ladder. 

1: معالمة المقارنة (عينات من نباتات نامية من بذور طبيعية مزرعة على ورق ترشيح معمق ومرطب بالماء المقطر المعمد).
2: نباتات نامية من بذور صناعية مخزنة مدة شهر في درجة 4°C وان جهشت حجوتها بالSA (2%) و CaCl₂ (12 ملجم/لتر) و BA (0.05 ملجم/لتر).
3: نباتات نامية من بذور صناعية مجهزة بالSA (2%)، BA (0.05 ملجم/لتر)، CaCl₂ (12 ملجم/لتر) و IBA (0.01 ملجم/لتر).
4: نباتات نامية من بذور صناعية مجهزة بالSA (2%)، BA (0.05 ملجم/لتر)، CaCl₂ (12 ملجم/لتر) و IBA (0.01 ملجم/لتر).
جامعة كريلاء // المؤتمر العلمي الثاني لكلية الزراعة 2012

جدول 3: عدد الحزم الناتجة والمسافة التي قطعتها (ملم) وإحجامها الجزيئية المقترحة لعينات الدنا المضاعفة لمعاملات هجين 12 GS باستخدام البادي OPC-03.

<table>
<thead>
<tr>
<th>الحجم الجزيئي (bp)</th>
<th>المسافة المقطوعة (ملم)</th>
<th>عدد الحزم</th>
<th>المعاملة</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>53</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1500</td>
<td>66</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>750</td>
<td>81</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>675</td>
<td>87</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>590</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>675</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>675</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جامعة كريلاء // المؤتمر العلمي الثاني لكلية الزراعة 2012

إن اعتماد تحليل نتائج دراسة العلاقة الوراثية على وجود أو غياب الحزم الناتجة من تضاعف قطع معينة من جينوم النباتات المدروسة وعلى الأوزان الجينية لتلك الحزم، تتفق مع كل من(16,17,18). ولم تتوخذ بالاعتبار الاختلافات في شدة تأثير الحزم للأسباب الآتية:

1. ظهور بعض الحزم التي لها نفس الوزن الجيني بشكل حزمة سميكة واحدة، وهي في الحقيقة عدد من الحزم المتجمعة.

2. يؤدي زيادة تركيز دنا القالب إلى تكرار عدد نسخ دنا الهدف وثم يتضاعف نفس الموقع أكثر من مرة.

3. صعوبة تحديد التركيز الدقيق للدنا، لتأثره بعده عامل (19).

ينتبث من نتائج الجدولين 2 و 3 إن المعالمات المختلفة المستخدمة في إنتاج البذور الصناعية لهجيني الطماطم، والممثلة بمنظمات النمو النباتية ومواد تغليف الأجنحة الجسدية فضلاً عن أطما وسط MS المستخدمة. لتأثر في التركيب الوراثي للنباتات النامية من هذه البذور مقارنة مع النباتات النامية من البذور الطبيعية لكلا الهجينين، إذ أظهرت المعاملات 2 و 3 و4 تطابقاً تاماً مع معاملة المقارنة (1) في كل هجيني الطماطم، في عدد الحزم الناتجة من تضاعف قطع معينة من جينوم النباتات المستخدمة فضلاً عن الأوزان الجينية لتلك الحزم التي تعمد على العدد وال مواقع المكونات لتسلسل البادي 03-03 على شريط دنا القالب، في حين لم تُظه البادات الأخرى أي نتيجة تضاعف بالرغم من إعاداتها أكثر من مرة، وذلك بسبب غياب مواقع المكونة لتسلسل تلك البادات في جينوم نباتات هجيني الخضرو و 18-19 (GS-18) في جينوم نباتات هجيني الخضرو 12-18 (OPC-12) للتحقق من مدى مطابقة نباتات الطماطم المنتجة RAPD من طريقة تكون الأعضا غير المباشر خارج الجسم الحي مع بارادرات الطماطة النامية في الحقل، وأظهرت النتائج عدم وجود تغابرات وراثية.

المصادر:


216


18. الشمري، إبراهيم عبد الله حمزة.2007. تثبيت وتقديم التغيير الوراثي لتحل الجفاف في بعض أصناف الحنطة (Triticum aestivum L.) خارج الجسم الحي. أطروحة دكتوراه. جامعة بغداد، كلية الزراعة، بغداد، العراق. ص: 129-146.

19. حسن، جدان قاسم.2007. تأثير الصعقة الكهربائي في تغيرات النمو الخضري والزهرى DNA و ABOCA DNA. أطروحة دكتوراه. جامعة بغداد، كلية الزراعة، بغداد، العراق. ص 93.