EFFECT OF SUCROS AND PHENYLALANIN ON ACCUMULATION OF TROPANE ALKALOIDS IN BALLADONNA Atropa belladonna CALLUS IN VITRO

ABSTRACT

An experiment was conducted at tissue culture lab., Dept. of Hort., College of Agriculture, University of Baghdad during 2009-2010. The study included effect of each sucrose and phenylalanine on fresh and dry weight of callus derived from shoot tip of belladonna and on accumulation of tropane alkaloid in callus which included (Atropine, hyoscyamine, hyosine or scopolamine). Results indicated the treatment 30 g.l\(^{-1}\) sucrose with 20 mg.l\(^{-1}\) phenylalanine gave the highest fresh and dry weight of callus (495.7 - 52.4) mg respectively, while the treatment 60 g.l\(^{-1}\) sucrose with 10 mg.l\(^{-1}\) phenylalanine gave the highest concentration of Atropine and Hyoscyamine of (528.73 - 70.29) µg.Gdw\(^{-1}\) respectively, while the treatment 60 g.l\(^{-1}\) sucrose with 40 mg.l\(^{-1}\) phenylalanine gave the lowest concentration of Atropine of 65.90 µg.Gdw\(^{-1}\).

The study included effect of each sucrose and phenylalanine on fresh and dry weight of callus derived from shoot tip of belladonna and on accumulation of tropane alkaloid in callus which included (Atropine, hyoscyamine, hyosine or scopolamine). Results indicated the treatment 30 g.l\(^{-1}\) sucrose with 20 mg.l\(^{-1}\) phenylalanine gave the highest fresh and dry weight of callus (495.7 - 52.4) mg respectively, while the treatment 60 g.l\(^{-1}\) sucrose with 10 mg.l\(^{-1}\) phenylalanine gave the highest concentration of Atropine and Hyoscyamine of (528.73 - 70.29) µg.Gdw\(^{-1}\) respectively, while the treatment 60 g.l\(^{-1}\) sucrose with 40 mg.l\(^{-1}\) phenylalanine gave the lowest concentration of Atropine of 65.90 µg.Gdw\(^{-1}\).

The study included effect of each sucrose and phenylalanine on fresh and dry weight of callus derived from shoot tip of belladonna and on accumulation of tropane alkaloid in callus which included (Atropine, hyoscyamine, hyosine or scopolamine). Results indicated the treatment 30 g.l\(^{-1}\) sucrose with 20 mg.l\(^{-1}\) phenylalanine gave the highest fresh and dry weight of callus (495.7 - 52.4) mg respectively, while the treatment 60 g.l\(^{-1}\) sucrose with 10 mg.l\(^{-1}\) phenylalanine gave the highest concentration of Atropine and Hyoscyamine of (528.73 - 70.29) µg.Gdw\(^{-1}\) respectively, while the treatment 60 g.l\(^{-1}\) sucrose with 40 mg.l\(^{-1}\) phenylalanine gave the lowest concentration of Atropine of 65.90 µg.Gdw\(^{-1}\).
في مختلف نماذج الجسم والأدوات والأدوات، ونذكر عن طريق خفض بعض المتغيرات (الإفرازات المعدة والمعنوية)، فهي ضعيفة وتحت التعرق في خلاصة البذور تشكل على تفسير المادة. (8) إن هذه الدراسات البديلة أن الهدف الأساسي للدروس مختلفة. خصائص الجرعة التربوية تشتكي من بعض الجوانبات البيولوجية الأخرى، فعرض زيادة انتاج مركبات الأيض الثاني لبدأ في اضافة الدراسات الوضوحية المتذكرة لها ومن الأحماض الطبيعية، فللحظ اضافتها إلى 

كأن الخلايا قد تزداد من إنتاج قليدات التروبيان والبيروبي، 

1. CRDCompletely Randomized
2. BA
3. 0.5
4. 1
5. 2012
6. 14
7. 11
8. A.belladonna
9. 2012
10. 0.05
11. 0.4
12. 0.25
13. 120
14. 13
جامعة كربلاء // المؤتمر العلمي الثاني للكلية الزراعية 2012

النتائج والمناقشة:

1- تأثير د-2،4-D و BA

تشير نتائج الجدول (1) إلى تفوق الوسط الغذائي المجف به 2،4-D بتراكيز 1 ملمغ/لتر على معدل لوزن الكالس المطرى بلغ 364.1 ملمغ، الذي لم يختلف معنويًا عن التراكيز 0.5 ملمغ/لتر من 2،4-D. تم استخدام وزن طري الكالس للحصول على معدلات لوزن وزن طري للعنب بلغ (149.1، 266.7) ملمغ على التوالي، وأوضحت نتائج الجدول تفوق BA بالتراكيز 0.25 في إعطاء معدل لوزن الكالس المطرى بلغ 356.8 ملمغ، والذي لم يختلف معنويًا عن التراكيز 0.5 ملمغ/لتر من D-2،4-D والذي بلغ 342.9 ملمغ. وبلغ معدل لوزن الكالس الطرفي 193.0 ملمغ عند معاملة المقارنة.

ويعتبر تأثير التداخل بين تراكيز D-2،4-D و BA المضافة إلى الوسط الغذائي أظهرت نتائج الجدول أعلى نتائج الارتفاع بين D-2،4-D و BA. التراكيز 1 ملمغ/لتر من D-2،4-D اعطى معدل لوزن الكالس الطرفي بلغ 510.0 ملمغ. بينما ألقى في الوسط الغذائي المجف بالتراكيز 0 ملمغ/لتر 0 ملمغ. وبلغ معدل لوزن الكالس الطرفي 127.0 ملمغ.

جدول (1) تأثير D-2،4-D والBA في إعداد الكالس المستنث من القمح النامي في بلادنا بجعة باردة (الوزن الطرفي ملمغ).

<table>
<thead>
<tr>
<th>الدورة</th>
<th>D-2،4-D ملمغ/لتر</th>
<th>BA ملمغ/لتر</th>
<th>المعدل (الوزن الطرفي ملمغ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.50</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>0.25</td>
<td>0.50</td>
<td>0.25</td>
<td>2</td>
</tr>
</tbody>
</table>

2- تأثير D-2،4-D و BA

تشير نتائج الجدول (2) إلى تفوق الوسط الغذائي المجف بتراكيز 1 ملمغ/لتر ملمغات 2،4-D معنويًا. التراكيز 0.5 من 2،4-D من دون تأثير ملمغات 1 ملمغ/لتر. التراكيز 1 ملمغ/لتر من D-2،4-D أظهرت فجوة في معدل لوزن الكالس الجاف بلغ 341.9 ملمغ. وأوضحت النتائج تفوق الوسط الغذائي مجف التراكيز 0.25 من D-2،4-D في إعطاء معدل لوزن الكالس الجاف بلغ 13.56 ملمغ. وبلغ معدل وزن جاف الكالس بلغ (17.62، 23.75) ملمغ على التوالي.

ويعتبر تأثير التداخل بين تراكيز D-2،4-D و BA في معدل وزن الكالس الجاف قد أوضحت النتائج (1) تفوق الوسط الغذائي مجف بالتراكيز 1 ملمغ/لتر من D-2،4-D بارتفاع 7.13 ملمغ. بينما بلغ ألقى في D-2،4-D بالمغلة BA واحداً معنويًا. التراكيز 0.25 من D-2،4-D بلغ (47.13، 45.25) ملمغ. وأوضحت النتائج تفوق BA على الاتجاه من BA للتراكيز 0.25 بلغ (9.73، 4.52) ملمغ.

جدول (2) تأثير D-2،4-D و BA في إعداد الكالس المستنث من القمح النامي في بلادنا بجعة باردة (الوزن الطرفي ملمغ).

<table>
<thead>
<tr>
<th>الدورة</th>
<th>D-2،4-D ملمغ/لتر</th>
<th>BA ملمغ/لتر</th>
<th>المعدل (الوزن الطرفي ملمغ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.50</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>0.25</td>
<td>0.50</td>
<td>0.25</td>
<td>2</td>
</tr>
</tbody>
</table>

282
جامعة كربلاء // المؤتمر العلمي الثاني لكلية الزراعة 2012

تشير نتائج الجدولين (1-2) إلى زيادة معدل الوزن الطري والجاف للكالس مع زيادة تركيز BA وصولاً إلى التركيز المثالي الذي أعطي التركيز 0.25 ملغ / لتر (356.8) ملغ وزن طري وجاف للكالس على التوالي. وعند تركيز BA 0.25 ملغ / لتر (10-20 D) تم حذف الكالس، ولكن امتزج الكالس مع تراكب الأوكسيدات والساوثينكتينات في تركيز BA 0.25 ملغ / لتر (10-20 D) لتواصل نتائجه بالكامل. تم تحديد "اًبكي" في مجال زراعة السائلية النباتية كما له من عناية مثالية خلال التوزيع بين تراكب الساوثينكتينات وBA المثالي وابكي في تركيز BA 0.25 ملغ / لتر (10-20 D) لاستخدامها في بيئات ضروري جداً وآلفانش (18).

3- تأثير السكروز والفنيل الآلاني والتفاعل بينهما في معدل الوزن الطري للكالس المستحث من القمح النامي لبارة البلاونا

تمت تجربة الجدول (3) عقب تفتيش النسب-selling بالتركيب 30 غ/ لتر سكروز في عرض اعلى معدل وزن الكالس الطري 119.1 ملغ ملمع في حين عبت التركيز (0-120 غ/ لتر من السكروز معدل وزن طري للكالس). وظهرت نتائج الجدول نفسه نسب-0.14 ملغ/ لتر من腱 الإباني (22.77 ملغ ملمع / لتر من الفنيل النينين في عرض اعلى معدل وزن طري للكالس بلغ 36.7 ملغ ملمع / لتر من السكروز مع 20 ملغ / لتر من الفنيل النينين حيث أعطيه 63.7 ملغ وزن طري للكالس.

جدول (3) تأثير السكروز والفنيل الآلاني والتفاعل بينهما في معدل الوزن الطري للكالس ملمع

<table>
<thead>
<tr>
<th>معدل</th>
<th>سكروز الفنيل النينين</th>
<th>سكروز الفنيل النينين</th>
<th>سكروز الفنيل النينين</th>
<th>سكروز الفنيل النينين</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>غ/ لتر</td>
<td>غ/ لتر</td>
<td>غ/ لتر</td>
<td>غ/ لتر</td>
</tr>
<tr>
<td>120</td>
<td>243.0</td>
<td>293.0</td>
<td>403.4</td>
<td>467.5</td>
</tr>
<tr>
<td>90</td>
<td>259.6</td>
<td>279.9</td>
<td>367.6</td>
<td>444.8</td>
</tr>
<tr>
<td>60</td>
<td>245.1</td>
<td>296.5</td>
<td>335.6</td>
<td>495.7</td>
</tr>
<tr>
<td>30</td>
<td>250.4</td>
<td>264.7</td>
<td>288.5</td>
<td>437.8</td>
</tr>
<tr>
<td>17</td>
<td>239.7</td>
<td>258.0</td>
<td>376.1</td>
<td>363.5</td>
</tr>
<tr>
<td>0</td>
<td>0.25</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

4- تأثير السكروز والفنيل الآلاني والتفاعل بينهما في معدل الوزن الجاف للكالس المستحث من القمح النامي لبارة البلاونا

أظهرت نتائج الجدول (4) تفتيش الوسط الغذائي المجهز بالتركيب 30 غ/ لتر من السكروز في عرض اعلى معدل وزن الكالس الجاف 43.8 ملغ ملمع في حين أعطيه التركيز (60-90 غ/ لتر من السكروز معدل وزن جاف للكالس بلغ (24.9 ملغ ملمع / لتر من الفنيل النينين. فقد أعطي هذه الأعداد أعلى تركيز 30 ملغ / لتر من الفنيل النينين 32.9 ملغ / لتر من الفنيل النينين، 354.2 ملغ / لتر من الفنيل النينين و 0 ملغ / لتر من الفنيل النينين. وتختلف نتائج الجدول نفسه فالتركيب 30 غ/ لتر سكروز مع 20 ملغ / لتر من الفنيل النينين في عرض اعلى معدل وزن الكالس للعقار بلغ 52.4 ملغ ملمع في حين بلغ اقليه عند الوسط الغذائي المجهز بالتركيب 120 غ/ لتر سكروز مع 0 ملغ / لتر من الفنيل النينين، بلغ 23.6 ملغ.}

283
جدول (4) تأثير السكروز والقنيل النين والداخل بينهما في معدل الوزن الجاف للكالس ملمغ

<table>
<thead>
<tr>
<th>القنيل النين</th>
<th>تراكيز السكروز غ/لتر</th>
<th>المعدل</th>
<th>الملف</th>
<th>التحليل</th>
<th>الملون</th>
<th>التحليل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>غ/لتر</td>
<td>120</td>
<td>90</td>
<td>60</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>35.6</td>
<td>23.6</td>
<td>28.9</td>
<td>46.1</td>
<td>43.8</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>34.6</td>
<td>25.2</td>
<td>32.2</td>
<td>42.3</td>
<td>43.8</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>34.7</td>
<td>23.9</td>
<td>30.3</td>
<td>32.3</td>
<td>52.4</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>32.9</td>
<td>26.7</td>
<td>30.2</td>
<td>30.3</td>
<td>44.2</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>32.4</td>
<td>25.3</td>
<td>31.3</td>
<td>38.4</td>
<td>34.6</td>
<td>40</td>
<td>2.8</td>
</tr>
</tbody>
</table>

اشارت نتائج الجدولين (3 و4) إلى انخفاض معدل وزن الكالس الطري مع زيادة تراكيز السكروز المضافة إلى الوسط الغذائي إذ بلغ في الوسط الغذائي المجهز بالتركيز 0/30 غ/لتر السكروز أعلى معدل وزن الكالس الطري 441.9 ملمغ في حين أعطى الوسط الغذائي المجهز بالتركيز 120 غ/لتر السكروز أقل معدل وزن الكالس الطري 247.6 ملمغ. بينما أعطى الوسط الغذائي المجهز 30 غ/لتر السكروز أعلى معدل وزن الكالس الجاف 43.8 ملمغ، وبلغ أقله في الوسط المجهز 120 غ/لتر السكروز 24.9 ملمغ.

وعن تأثير القنيل النين في معدل وزن الكالس الطري والحاج فيلاحظ أن الشخص الاميني لم يؤثر معيوناً في زيادة معدل وزن الكالس فقد بلغ أعلى معدل وزن الكالس الطري والحاد عند معاملة الحد (35.6) ملمغ. وتشير نتائج الجدول أيضًا إلى تفاوت الوسط الغذائي المجهز بالتركيز 20 غ/لتر من القنيل النين 30 غ/لتر السكروز في اعطاء أعلى معدل وزن الكالس الطري، حيث بلغ 495.4 ملمغ وأعطي الوسط نفسه وزن جاف للكالس بلغ 52.4 ملمغ، بينما كان أقل وزن طري في الوسط المجهز 40 غ/لتر من القنيل النين 120 غ/لتر السكروز بلغ 239.7 ملمغ وكان أقل وزن جاف للكالس كان عند زيادة التناول للحليب في النسبة 2% من السكروز و 1% من القنيل النين 30 غ/لتر السكروز اعطاء أعلى معدل وزن طري و lẫnل لللكالس الجاف. Scopolamine

وناتيجة مع مما توصل إليه (22) الذي وجد أن زيادة السكروز سببت زيادة في انتاج نسيج الكالس وناتج قلوي H. niger وذلك عند دراسته على نباتات

5- تأثير السكروز والقنيل النين في تراكيز الأنثروبين والهيوسيامين والهيوسين المتكون في الكالس المستوحث من القلقة النامية للبلدان

للمقدمة (5) و (6) تشير نتائج الجدولين و Mass HPLC، في سابع طهوراً، إضافة أعلى تركيز لمركبات Atropine 528.73 ميكروغرام/ غرام وزن جاف وكما في الصك (7)، بلغ 268.92 ميكروغرام/ غرام وزن جاف وكما في الصك (4) و (5). و栓 تركيز لمركبات السكروز عند المعاملة 40 ملمغ/ لتر من القنيل النين 60 غ/لتر السكروز بلغ 15.90 ميكروغرام/ غرام وزن جاف كما في الصك (10) و栓 تركيز عند معاملة 10 ملمغ/ لتر من السكروز 70.29 ميكروغرام/ غرام وزن جاف كما في الصك (1) و栓 تركيز لمركبات الهيوسيامين 0.78 ميكروغرام/ غرام وزن جاف عند المعاملة 30 ملمغ/ لتر من القنيل النين 60 غ/لتر السكروز بلغ 174.55 ميكروغرام/ غرام وزن جاف كما في الصك (8) و栓 تركيز لمركبات الهيوسين 20 ملمغ/ لتر من القنيل النين 60 غ/لتر السكروز بلغ 174.55 ميكروغرام/ غرام وزن جاف كما في الصك (8).

وقد يعزى سبب زيادة انتاج الفولفات بزيادة تراكيز الشخص الاميني إلى كونه البادئ النباتي لها إلى وسط مزج كالم phenylalanine Ornithine (23) تتقن هذه النتائج مع متوصل اليا (24) الذي وجد أن اضافة
الكربلاء // انؤتًر انعهًي انثاَي نكهيت انسراعت

Daturastramonium - Phenylalanine

Daturametel - Hyosyamine, Scopolamine

transfer root - Atropine, 87.81% / 99.85% (Atropine / Phenylalanine) 26.01% / 63.02%

أعطت المعاملة 0 ملمع / لتر من الفنيل الدين 90 غم / لتر من السكرز تركز لمركباً الاتروبين بلغ (30.02%) 17.90 / 116.07 ميكروغرام / غرام وزن جاف وكما في الشكل (19). واعطت المعاملة 10 ملمع / لتر من الفنيل الدين 100 غم / لتر من السكرز تركز لمركباً الاتروبين بلغ (99.85 ميكروغرام / غرام وزن جاف وكما في الشكل (15) واعطت المعاملة 10 ملمع / لتر من الفنيل الدين 90 غم / لتر من السكرز تركز لمركباً الاتروبين بلغ (30.02%) 17.90 / 116.07 ميكروغرام / غرام وزن جاف وكما في الشكل (19).

وقد يوجد سبب الاستجابة عند زيادة تركز المحاص الأممي في زيادة الجهد العامل والتي اثر سلياً في تلك الخلايا مما قد تسبب في نمذجة عند ازفاض في الانتهاءات المتوازيه عن تخليق الأيض الثانوي (32) أو قد يعيار السبب إلى أن زيادة الإجهاد قد يسبب انخفاض قابلية الخلايا على امتصاص العناصر الغذائية التي تحتاجها بكفاءة لاتباع مركبات الأيض الأولى، ومن ثم قصة في أنتاج الأيض الثانوي الذي يعد ناجحاً نهائياً" للايبر الأولي (33 و34).
جدول (5) تأثير السكروز والفنيل الألين في إنتاج الأتروبين والهيوسين وبايروغرام / غرام وزن جاف المقدرة من كلا نبات البلادونا

<table>
<thead>
<tr>
<th>Hyoscine</th>
<th>Hyoscyamine</th>
<th>Atropine</th>
<th>السكروز غم / لتر</th>
<th>الفنيل الألين ملغم / لتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.02</td>
<td>18.60</td>
<td>190.83</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>99.30</td>
<td>25.59</td>
<td>101.43</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>54.46</td>
<td>30.16</td>
<td>116.07</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>50.63</td>
<td>23.75</td>
<td>67.79</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>59.97</td>
<td>14.45</td>
<td>80.44</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>96.87</td>
<td>70.29</td>
<td>528.73</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>43.01</td>
<td>20.83</td>
<td>84.39</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>85.41</td>
<td>63.90</td>
<td>118.77</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>40.44</td>
<td>10.78</td>
<td>107.03</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>174.55</td>
<td>13.03</td>
<td>117.04</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>40.44</td>
<td>25.52</td>
<td>127.88</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>62.11</td>
<td>13.51</td>
<td>66.11</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>65.39</td>
<td>55.47</td>
<td>268.92</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>103.08</td>
<td>28.90</td>
<td>94.92</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>48.52</td>
<td>15.08</td>
<td>129.56</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>57.18</td>
<td>17.90</td>
<td>107.25</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>59.80</td>
<td>21.78</td>
<td>92.04</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>159.43</td>
<td>15.28</td>
<td>65.90</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>61.93</td>
<td>25.96</td>
<td>99.85</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>58.74</td>
<td>10.84</td>
<td>94.42</td>
<td>120</td>
<td>0</td>
</tr>
</tbody>
</table>
الشكل (1) تأثير الفنيل الأدين بتركيز 0 ملجم.لتر١ + سكروز بتركيز 30 غم.لتر١ + سكروز بتركيز 10 ملجم.لتر١.

الشكل (2) تأثير الفنيل الأدين بتركيز 10 غم.لتر١ + سكروز بتركيز 30 غم.لتر١ + سكروز بتركيز 1 ملجم.لتر١.

الشكل (3) تأثير الفنيل الأدين بتركيز 20 ملجم.لتر١ + سكروز بتركيز 30 غم.لتر١ + سكروز بتركيز 3 ملجم.لتر١.

الشكل (4) تأثير الفنيل الأدين بتركيز 30 غم.لتر١ + سكروز بتركيز 30 غم.لتر١.

الشكل (5) تأثير الفنيل الأدين بتركيز 40 ملجم.لتر١ + سكروز بتركيز 30 غم.لتر١ + سكروز بتركيز 5 ملجم.لتر١.

الشكل (6) تأثير الفنيل الأدين بتركيز 60 غم.لتر١ + سكروز بتركيز 30 غم.لتر١ + سكروز بتركيز 5 ملجم.لتر١.
الشكل (7) تأثير الفنيل الأدين بتركيز 10 ملجم/لتر + سكوروز بتركيز 60 غم/لتر
الشكل (8) تأثير الفنيل الأدين بتركيز 20 ملجم/لتر + سكوروز بتركيز 60 غم/لتر
الشكل (9) تأثير الفنيل الأدين بتركيز 30 ملجم/لتر + سكوروز بتركيز 60 غم/لتر
الشكل (10) تأثير الفنيل الأدين بتركيز 40 ملجم/لتر + سكوروز بتركيز 60 غم/لتر
الشكل (11) تأثير الفنيل الأدين بتركيز 0 ملجم/لتر + سكوروز بتركيز 90 غم/لتر
الشكل (12) تأثير الفنيل الأدين بتركيز 10 ملجم/لتر + سكوروز بتركيز 90 غم/لتر
الشكل (13) تأثير الفنيل الانتي بتركيز 20ملغ.لتر -1 + سكروز بتركيز 90 غم.لتر -1
بتركيز 30ملغ.لتر -1 + سكروز بتركيز 90 غم.لتر -1

الشكل (14) تأثير الفنيل الانتي

الشكل (15) تأثير الفنيل الانتي بتركيز 40ملغ.لتر -1 + سكروز بتركيز 90 غم.لتر -1
بتركيز 0ملغ.لتر -1 + سكروز بتركيز 120 غم.لتر -1

الشكل (16) تأثير الفنيل الانتي

الشكل (17) تأثير الفنيل الانتي بتركيز 10ملغ.لتر -1 + سكروز بتركيز 120 غم.لتر -1
بتركيز 20ملغ.لتر -1 + سكروز بتركيز 120 غم.لتر -1

الشكل (18) تأثير الفنيل الانتي
المصادر:-

1. شفاليه، 2010. الطب البديل، التداوي بالاعشاب والنباتات الطبية. ترجمة. عمر الأيوبي، اشراف د. محمد دبس، ص 66.
6. نصروف، أ. م. 2006. فسيولوجيا وكمية الفولات في النباتات الطبية وهميتها الدوائية والعلاجية دار الكتب العلمية للنشر والتوزيع، القاهرة، مصر.
7. التعاون. 2010. العلاج بأشجار وشجيرات الفاكهة والغابات، ص 15.

32. عبد القادر ، فصيل وعبد اللطيف ، غيمة وشوقى ، احمد وابو طبيبه ، عباس والطيب ، غسان . 1982 . علم فسيولوجيا النبات . وزارة التعليم العالي والبحث العلمي . العراق.
