Comparative of Phytochemical and Antimicrobial of Sesbania Grandiflora Leaves Extract

Nadia K. J. Al-Dawah1 Shatha Mosa malaghy Al-safi2 Mohammed A. Aboktifa3 Saadia S. Mehdy AL-Zeiny4 Bassam Ali Abed AL- Shimmary5 M.T.N. Al-Bayati6 Numan Abbadi Muhammad7
College of Veterinary Medicine, University of Kufa
Email: 1 nadiak.jassem@uokufa.edu.iq, 2 shatham.mlagee@uokufa.edu.iq, 3mohammeda.aboktiva@uokufa.edu.iq, 4 saadias.mahdy@uokufa.edu.iq, 5alshimmary81@yahoo.com, 6naqimt@gmail.com, 7alshimmeryn@yahoo.com

Received 19 April 2014 Accepted 12 May 2014

Abstract
The aim of this study was detection of the bioactive chemical constituents of sesban leaves extract by a qualitative analysis for each ethanol and methanol extract as used the Ethanol extract as antibacterial. The phytochemical analysis of the methanol and ethanol extracts of leaves of Sesbania sesban revealed the presence of flavonoids, alkaloids, steroids, phenols, carbohydrates and anthraquinones. While, they realed other chemical compound such as, tannins, saponins, terpenoids, amino acids and phytosterols. From the other hand, the ethanol extract of sesban was used as antibacterial against the gram positive bacteria (Streptococcus, Enterococcus faecalis (ATCC 29212), Staphylococcus aureus, (ATCC 25923), Escherichia coli (ATCC 25922), Salmonella typhi (MTCC 733), Proteus vulgaris (MTCC 1771), Pseudomonas aeruginosa (MTCC 424), Klebsiella pneumoniae (ATCC 15380) and was compared with standard drugs such as, gentomaicine and penicillin. The result showed greater inhibition zone in Pseudomonas (18 mm) at 1000mg/ml while, smaller inhibition zone in Streptococcus (10mm) at 500mg/ml.

Key words: phytochemical, SESBANIA GRANDIFLORA LEAVES , antibacterial.

الهدف من هذه الدراسة هو الكشف عن المكونات الكيميائية النشطة بيولوجيًا لمستخلص أوراق السيسبان عن طريق التحليل النوعي لكل من مستخلصات الي�انول والأيتيانول واستخدام الأبوير كمضاد للكريستيا. وقد كشف التحليل الكيميائي البائي لمستخلص الميتانول والأيتيانول من أوراق السيسبان وجود الفلوينويد، قوليويدات، المنتشطات، الكيتيون، الكورتيويدات والأثراكزيدات. في حين اختطفا في وجوه مركبات كيميائية أخرى مثل الغفوس، السابونين، والتينورين، الأحماض الأمينية، والفيتستروكس. من ناحية أخرى، فإن استخدام مستخلص اليثانول من أوراق السيسبان كمضاد للكريستيا ضد البكتيريا إيتبائية الحرام (اللندية، الكوريات المعوية البرازية (أي تي سي سي 20112)، الكوريات المعوية الأورية، (أي تي سي سي 20123) والكيرتيت السليالة الحرام (الأوربية الكورياتية) (أي تي سمي 20124)، التلفازة الزنجارية(424), والسفينلاية النفي (733), (MTCC 771), (الزنليفة الزنجارية (30), MTCC 15380) مقارنة ذلك مع الأدوية النظامية مثل، جتاميلس وبيتلسيين. وقد أظهرت تباليث أكبر من مئة ملغ/مل (100mg/ml) ملتقطة عند الزنليفة الزنجارية (أي ملم) في حين 500ملغ/مل، وتبالث أكبر من منطقة من كلاً من (11) ملغ/مل. من هذه النتائج يمكن أن ثبت إمكانية استخدام مستخلص اليتاثانول من أوراق السيسبان كعلاج للأمراض.
Introduction

Throughout human history, people have relied on natural products and plants to promote and maintain good health, to fight sickness, pain and disease \(^{(1)}\). According to World Health Organization (WHO), traditional medicine is estimated to be used by 80% of the population of most developing countries. These plant-based medicines are used for primary health care needs \(^{(2)}\).

Sesbania sesban (L.), is a widely available plant; it is an open branching tree tall up to 15m and 39cm in diameter belongs to family Fabaceae\(^{(3)}\). The chemical constituents found are galactomannans, linoleic acid, beta-sitosterol and carbohydrates \(^{(4)}\). The major contributors of phenolic substances in *S.grandiflora* are simple phenolics acids. Apart from this the other bioactive compounds reported in this plant are saponins\(^{(5)}\). Traditionally the plant has been used for the treatment of headache, in fever, as a tonic, in catarrh, as an astringent etc\(^{(6,7)}\). Generally bark is used as astringent and used for treatment of small pox, ulcers in mouth and alimentary cannal, infantile disorders of stomach, scabies etc. The juice of leaves of the *Sesbania* grandiflora have been reported to have anxiolytic and anticonvulsant anthelmintic demulcent, expectorant, antipyretic, in treatment of bronchitis, cough, vomiting, wounds ulcers, diarrhoea, dysentery etc\(^{(6)}\). The flowers have been reported to have antimicrobial activity.

The medicinal value of plants lies in some chemical substances or group of compounds that produce a definite physiological action in the human body. These chemical substances are called secondary metabolites\(^{(8)}\). Phytochemicals with biological activity have had great utility as pharmaceuticals and pharmacological actions. These type of activities’ of herbal drugs are due to the presence of various active principals or phytoconstituents like alkaloids, glycosides, reducing sugar, tannins, saponins, resins, phytosterols, flavonoids, organic acids, essential oils, fixed oils etc. Although in recent times, synthetic drugs are used extensively in modern medicine systems\(^{(9)}\).

The aim of the present work is to evaluate the phytochemical composition and relationships between total phenolic contents and antibacterial potentials from *S. grandiflora*.

Materials and method

Collection of Plant material

The leaves of sesban plants were collected from garden of veterinary medicine collage University of Kufa from November - December 2012. The studies were conducted from March 2013. It was cleaned, washed, shade dried and powdered for the polyphenols extract study.

Preparation of extracts

Extraction of the plant leaves were done with different solvents based on the polarity of the solvents. Were used as solvents methanol and ethanol extraction by methanol is achieved according to \(^{(10)}\).

1- Two hundred (200) gm. of sesban leaves were crushed with 400ml of 95% methanol , mixed for 18h in magnetic stirrer at room temperature, then filtered under vacuum using Whitman No.(1).

2- The filtrate residues from step one was mixed again with 200ml of 95% methanol for 18h in magnetic stirrer at room temperature and the filtered was collected as described in step one. The filtrate substance that result from step 1 and 2 was evaporated in incubator.
(42°C) to reach one-third of original volumes.

The concentrated extract was separated from low organic materials by addition of chloroform 20:100 (extract: chloroform) in separatory funnel, then the mixture was left for one hour to separate in two layers: lower layer contain chloroform and upper layer contain (total polyphenol). The upper layer was separated with chloroform 10:100 (extract: chloroform), then the mixture was left for one hour to separate in two layers: lower layer contain chloroform and upper layer contain (total polyphenol).

- Ethanol extracts was depending on ethanol by using soxhlet apparatus and continuous hot extraction for 72 hours at (60-70°C) then dried and collected as powder.

Phytochemicals detection of the active components of sesban leaves:

Chemical tests were carried out on the sesban leaves extract by using standard procedures to identify the constituents as follows:

- **Detection of tannins:** According to (12).
- **Detection of steroids:** According to (13).
- **Detection of terpenoids:** According to (13).
- **Detection of saponins:** According to (14).
- **Detection of flavonoid:** NaOH Tests,
- **Detection of phenol:** Phytosterols:
- **Salkowski Test**, Liberman-Burchard's Test, Carbohydrates Molish's Test, Amino acids Ninhydrin Test and Anthraguinones: According to (15).
- **Detection of alkaloids:** According to (16).

Results

In the present investigation, comparation between phytochemical of methanol sesban extract and ethanol sesban extract as shown in table (1).
Table(1): Showed the comparation phytochemical of sesban extracts

<table>
<thead>
<tr>
<th>Chemical group</th>
<th>Methanol extract</th>
<th>Ethanol extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannins</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponnins</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Phenols</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Amino acids</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Anthraquinones</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phytosteols</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

(+) indicates presence, (++) indicates presence in high levels, (-) indicates absence.

The phytochemical test of the crude methanol and ethanol extracts of *Sesbania sesban* leaves Refers to presence of the same chemical compound such as, flavonoide, alkaloids, steroids, phenols, carbohydrates and anthraquinones. While, different in amount of the other chemical compound such as, tannins, saponnins, terpenoids, amino acids and phytosterols.

The results of the antimicrobial activities with different conc. Of the ethanol sesban extract against the bacteria were shown in table (2).

Table (2): Effect of ethanol extract of sesban plant and standard drugs on Pathogenic organism

<table>
<thead>
<tr>
<th>Test organism</th>
<th>standard drugs</th>
<th>Ethanol 500mg/ml</th>
<th>Ethanol 750mg/ml</th>
<th>Ethanol 1000mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus</td>
<td>27 12</td>
<td>10</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>25 _</td>
<td>13</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>22 23</td>
<td>13</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Salmonella</td>
<td>28 _</td>
<td>11</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>34</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella</td>
<td>28</td>
<td>20</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>30</td>
<td>25</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>25</td>
<td>20</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

Values are inhibition zone (mm).

In the investigation of antibacterial has been shown significant to all bacteria above.

Discussion

Phytochemical analysis is the characterization of an active principle responsible for some toxic or beneficial effect shown by a crude plant extract. Alkaloids are heterogeneous group compounds which contain one or more nitrogen atom in acyclic system. These are widely used for medicinal purposes and have positive or negative effects to human beings (19). Alkaloids are reported to have analgesic, anti-inflammatory function and help to alleviate pain, develop resistance against diseases and endurance against stress (20). A better precipitation of alkaloids was obtained in the methanol and ethanol extracts of leaves extracts of *Sesbania sesban*. The result coincides with the view of Jain *et al.* (21), who found high degree of alkaloid precipitation in the methanol extract of *Cocculus hirsutus*. Harborne (22) qualified flavonoids as being probably the most useful class of secondary plant constituents from a systematic point of view. The flavonoids are the compounds structurally derived from the parent substance flavone, and contain conjugated aromatic systems (19). Flavonoids have been referred to as nature’s biological compound because of their inherent ability to modify the reaction taking place in the body due to allergies, virus and carcinogens. They show anti-inflammatory, antimicrobial and anticancer activity (23).

Flavonoids are found in methanol and ethanol extracts of leaves extracts of *S.sesban* and show different degree of precipitation. Phenols are reported as antitumour agents and exhibit antioxidant properties (24). The methanol and ethanol extracts of leaves of *S.sesban* showed a better precipitation of phenolic content. Similar results were reported for methanol leaf extracts of *oxalis corniculata* (25).

Phytosterols were found to be present in all the five extracts of the plant parts. Sterols and triterpenes are based on the cyclopentane perhydrophenanthrene ring system. In recent years, an increasing number of these compounds have been detected in plant tissues. These phytosterols are probably ubiquitous in occurrence in higher plants and occur as both free and as simple glucosides (19). Similar observations are made from the plant parts of *Ichnocarpus frutescens* (26).

Today, natural products derived from plants are being tested for the presence of new drugs with new modes of pharmacological action, utilizing the special feature of higher plants to produce a large number of secondary metabolites (27).
Highly significant degree of activity was observed against the test bacteria *Pseudomonas* with 18 mm in diameter followed by *Proteus vulgaris* and *Klebsiella* with 16 mm in diameter at 1000 mg/ml of the extract. In most of the bacteria examined, a better zone of inhibition was obtained at 500 mg/ml and 750 mg/ml of the extract. When compared to the standard drugs, the plant extract showed a substantial amount of inhibition in the case of *Escherichia coli* (13 mm), *Enterococcus faecalis* (14.5 mm). A fluctuating trend of inhibition zone was found against some pathogens in the analysis. Similar fluctuation trend of inhibition zone was reported by (28, 29). This may be due to the fact that at higher concentrations, the rate of diffusion may perhaps be varied and hence, it might not be available to react with the microorganisms.

Plants are important source of potentially useful structures for the development of new chemotherapeutic agents. The first step towards this goal is the *in vitro* antibacterial activity assay and in the recent years several reports available on the antibacterial activity of plant extracts on human pathogenic bacteria (30). The beneficial effects of treatment can be achieved with leaves extract of *S. sesban* for various bacterial infectious diseases like pneumonia, diarrhea, urinary tract infection and even some skin disease. The broad antibacterial activities could be as a result of the plant secondary metabolites like alkaloids, flavonoids, tannins, phytosterols etc., present in the extracts. (31) reported that tannins had been widely used topically to sprains, bruises and superficial wounds as such, it could be probable that tannins and other plant phenols from this extract were responsible for these broad activities. Some of these observations have helped in identifying the active principle responsible for such activities and in developing drugs for the therapeutic use in human beings.

Conclusion

Phytochemical study showed the presence of phytochemicals such as alkaloids, flavonoids, phenols and phytosterols in *Sesbania sesban* which might be responsible for their therapeutic effects. It further reflects a possibility for the development of many more novel chemotherapeutic agents or templates from the plant which in future may serve for the production of improved therapeutic plant based drugs. In conclusion, the stem extract of *Sesbania sesban* possess a broad spectrum of activity against a panel of bacteria responsible for the most common bacterial and fungal diseases.

Reference

