Determination the density of cometary nucleus material using gamma ray attenuation

Abstract

In this work, the technique of attenuation of gamma ray to calculate the density of comet nucleus materials (C/2009 P1 (GARRADD) at different range of energy (0.2- 0.9 MeV). also, the single scattering model for gamma rays has been assumed that photons reaching the detector with scattered only once in the material. The program has been designed and written in FORTRAN language (77 – 90) to calculate the density for molecules using Monte Carlo method was used to simulate the scattering and absorption of photons in semi- infinite material. Gamma ray interacts with the matter by three mainly interactions: Photoelectric effect, Compton scattering and Pair production (electron and positron). On the 137Cs source energy (662 keV), Compton scattering is the dominant interaction. at energies below about 150 keV the Photoelectric effect is significant , While Pair production occurs at energies above twice the electron rest mass energy (1.022 MeV). Both these processes have mass attenuation coefficients that are heavily dependent on elemental composition, which is why only those source energies within the "Compton window" are useful for densitometry. The calculation of our results of the density were compared with the real density and the comparison is very good.