Fulltext

Optimal Hydrothermal dispatch for Long Term Using ANN

استخدام الشبكة العصبية الاصطناعية في التشغيل الأمثل لمحطات التوليد الكهرومائية للفترة الطويلة

Dr. M. S. Al-Hafid د.ماجد صالح الحافظ --- Dr. A. B. R. Sulaiman د.عبدالباري رؤوف سليمان --- Dr. A. S. Al-Fahadi د.أزهر سعيد الفهادي*

AL-Rafidain Engineering Journal (AREJ) مجلة هندسة الرافدين
ISSN: 18130526 Year: 2011 Volume: 19 Issue: 1 Pages: 123-133
Publisher: Mosul University جامعة الموصل

Abstract

The optimal hydrothermal scheduling is the distribution of load among the generating stations. The objective function for the problem is to minimize total generating cost considering the electrical and hydrological constraints. This problem is usually solved in two stages. The first is to find the hydropower generation share, then to find the thermal generation share. This research concerns the first stage. This work uses the Artificial Neural Network (ANN) to find the optimal scheduling of the monthly water discharge over the year. The main power station of Mosul dam is considered as an application example for this study. Six input variables are chosen to be the input to the ANN. They are monthly inflow water, monthly demand water, number of the month in a year, expected next year water inflow, available stored water (water from the past year). The ANN is trained and tested by the available water flow data over the past 65 years (1931- 1995). It is found that this technique enables the utilization of whole inflow water for most of the years (within considered constraints) in spite of the great fluctuation of inflow water for these years. Besides, this technique takes into account the status of the water for last year and next year in addition to the year under study. This means that the water distribution improves the utilization of available water over three years

الخلاصة يعرف توزيع الحمل في منظومة تحوي محطات توليد حرارية ومحطات توليد كهرومائية بالتوزيع الأمثل للحمل، وتكون دالة الهدف للبحث تقليل كلفة توليد الكهرباء الكلية مع اخذ المحددات الكهربائية والهيدرولوجية بنظر الاعتبار. يتم هذا التوزيع بخطوتين الأولى إيجاد جزء التوليد الكهرومائي ثم إيجاد قيمة التوليد الحراري. يهتم البحث بالجزء الأول. تم في هذا البحث استخدام تقنية الشبكة العصبية الاصطناعية لإيجاد التوزيع الأمثل للمياه الواردة على أشهر السنة. أخذت محطة سد الموصل الرئيسة كمثال لتطبيق الدراسة. تم اختيار ستة معطيات لتكون متغيرات الدخل للشبكة العصبية الاصطناعية، تمثل أهم المؤثرات التي يجب ملاحظتها وهي كمية المياه الشهرية الواردة وكمية المياه الشهرية اللازمة للأغراض المختلفة وتسلسل الشهر في السنة وكمية المياه الواردة في السنة التالية وكمية المياه المخزونة وكلفة الأحمال الكهربائية الشهرية. اختبرت الشبكة العصبية الاصطناعية بقيم تمثل كميات المياه الواردة خلال 65 سنة ( 1931 - 1995 ). وجد بان هذه التقنية تمكن من استغلال كامل المياه الواردة لغالبية السنوات (ضمن محددات التوزيع) على الرغم من التذبذب الكبير في كميات المياه الواردة لهذه السنوات. كذلك فان هذه التقنية تأخذ بنظر الاعتبار حالة المياه في السنة السابقة واللاحقة بالإضافة إلى سنة الدراسة، أي أن توزيع المياه يحسن من استغلالها على مدى ثلاث سنوات.