Experimental and FEM Study of Coated Inserts on Cutting Forces in Orthogonal Cutting

Abstract

In this study, an attempt has been made to investigate and simulate the influence of coated layers, on the cutting force components in orthogonal turning process using AISI 1010 steel.A series of experimental and numerical tests have been done with four types of inserts including uncoated, coated tool with (TiN), (TiN /TiCN) and (TiN /Al2O3/ TiCN) using the special FEA code (DEFORM-2D). The turning tests were conducted at five different cutting speeds (45, 65, 97, 145, and 206 m/min.), while feed rate and depth of cut were kept constant at (0.2 mm/rev.) and (1.2 mm) respectively. The results show that the minimum force is achieved when using TiN/TiCN insert compared with other inserts in all cutting conditions. The cutting force components (tangential and feed force) are decreasedby (22% and 69% respectively) when the cutting speedincreases from (45 to 206) m/min. The maximum relative difference between simulated and measured values is less than (17%).