Investigation of *Streptococcus mutans* isolated from dental caries patients

Israa abdulameer Flayyih Assis.Prof Dr. Mahdi H. Al-Ammar
Kufa Uni/Faculty of Science/Bio.Department

Summary

Introduction: The clinical specimens (100) were collected from patients suffering from dental plague infectious during the period from October (2012 to March 2013) in Najaf City.

Methodology: *Streptococcus mutans* isolates were detected by cultural and biochemical tests as well as API 20strep, then confirm the GTFB gene by PCR technique.

Result: *Streptococcus mutans* were recorded (40%) among *Mutans Streptococcus* from total isolates. The virulence factors of bacteria were detected and the results showed that all isolates were produced glucan, biofilm and Dextranase 40(100%) and varied produce hemolysin 30(75%). Also, 20-25(50-62.5%) of *Streptococcus mutans* has the colonization factor antigen III, I respectively and 15 (37.5%) of isolates are mutacin production. Finally, Molecular study by PCR technique was used for detection gtfB gene, it was found the gtfB gene predominance in 22 (55%) of clinical isolates.

Conclusion: The study showed that *Streptococcus mutans* have gtfB gene which responsible for the pathogenicity of *Streptococcus mutans*.

Introduction
Streptococcus mutans are gram-positive cocci, nonmotile facultative anaerobic microorganism which can metabolize carbohydrates and are considered to be the principle etiological agent of dental caries (Tanzer et al., 2001). The cariogenicity of this bacterium is associated with various factors including dextran, production of high concentration of acid in the plaque and glucosyltransferase activity.

The Mutans streptococci use sucrose to produce extracellular glucan, a water insoluble polysaccharide, which enables the bacteria to attach to the tooth surface and also protects them from external factors such as mechanical disruption, salivary clearance, and antimicrobial substances (Tinanoff et al., 2002). Equally important is the ability of Mutans streptococci to both produce acid (acidogenic) and survive in an acidic environment (aciduric), properties that enable them to exhibit high pathogenicity (Aas et al., 2008).

Finally, Mutans streptococci can survive when external carbohydrates are not present due to their ability to store intracellular (Tinanoff et al., 2002). The Water insoluble glucans are significant constituent of dental plaque biofilms that facilitate adherence and accumulation of S. mutans and other oral bacteria. The biofilm formation is influenced by the amount of glucosyl transferase produced by S. mutans are the most common pathogens isolated from human dental plaque and their prevalence has been reported in several epidemiological studies (Straetemans et al., 1998; Okada et al., 2005).

Streptococcus mutans is very important to study, not only because virtually everyone in the world carries it, but also it has various symptom that affect our daily lives. As the bacteria develop in the mouth, they...
cause tooth destruction, impaired speech, difficulty of chewing, multiple infection, Psychological problems such as poor social interaction, concentration problem, etc (Philip et al., 2009). Because, the incidence of infection caused by Streptococcus mutans in dental caries samples, the study aimed to identified the bacteria and study related to its ability to produce the virulence – associated properties, as well as the Glucoasyltransferase genes detected by PCR.

-Methidology:

- Identification of bacteria

A single colonies were isolated from primary positive cultures (on specific media) and identified by morphological, biochemical tests and API 20 strep (BioMerieux, France) according to the criteria of (Holt et al., 1994; Collee, et al., 1996; MacFaddin, 2000).

-Detection of virulence factors:

Hemolysin production was detection according to method of (Collee et al., 1996). Capsule was stained according to method of (Bottone et al., 1998). Colonization Factor Antigen (CFA) (Ofek et al., 1977). bacteriocin production detected by cup assay method was carried out (AL-Qassab & AL-Khafaji,1992). Biofilm production detected by Tissue culture plate method (Christensen et al,1985).Dextranase production was detected according (Staat et al,1973).Glucan production was detection according to method of (Emilson & Bratthal,1976).

-Detection of virulence gene. The PCR assay was performed to detect the(gtfB) gene for confirmation the identification of Streptococcus
mutans and to detect the virulence factors genes, These primers synthesized by Alpha DNA. F gtf-B 5-ACTACACTTTCGGGTGGCTTG-3
Reverse gtf-B 5-CAGTATAAGCGCCAGTTTCATC-3(company, Canada).

-The results

-Streptococcus mutans characterization

A total 100 samples were collected from teeth and round teeth of patients suffering dental carier. The samples are activated in BHI Broth media at 37°C for 18-24h, then, they were incubated on selective media such as blood agar, crystal violet blood agar and tryptone-yeast extract cysteine with sucrose and bacitracin (TYCSB) at 37°C for 18-24h in anaerobic condition. The colonies are gray or white color on blood agar and crystal violet blood agar with diameter ranged from (0.5-1.0) mm in diameter α-hemolytic colonies and sometime tending to adhere to the surface of the agar.

The colonies of S. mutans in (TYCSB) medium appeared white color colony, 1-2 mm in diameter, with smooth surface with entire edge, dry and adherent. Microscopic examination revealed that streptococcus mutans is a gram positive cocci occurs in pairs or in short- or medium-length chains, with capsules. The Streptococcus mutans isolates are characterized by their ability to ferment glucose and lactose without H2S and gas formed on kligler iron agar (Acid/Acid), it produces (Acid) yellow color top and bottom (acidic) yellow color but without H2S and gas; it gave a negative result to catalase, oxidase, simmone citrate tests, motility and urease, whereas, it gave a positive result to, Vokes Proskeur and methyl red test. Also, differential Streptococcus mutans on the other
bacteria by biochemical tests and Epi 20 strep as index (3). It has been shown that *Streptococcus mutans* isolates do not grow in 6.5% NaCl concentration and pH were 3.5 to 6.5.

The results demonstrate that (40/100) and isolates are positive in identification by API20Strep, as shown in Figure (1). The identification percentage is (id% = 95), and the rest (60) strains gave negative for *Streptococcus mutans* identification.

![Image of API20Strep results]

Figure : (1) The Identification of Api20 strep for *Streptococcus mutans*.

-Virulence factors determination:

The results of virulence factors of *Streptococcus mutans* isolates, show that the 30 (75%) from isolates of *Streptococcus mutans* were gave positive for heamolysin production, (α-heamolysin), when they were cultured on blood agar medium. Also 20 (50%) from isolates were capsulated.
The 40(100%) from *S. mutans* isolates had the ability to produce glucan by glucoasyltransferase, when inoculated on glucan medium for week at 37°C. and 15(37.5%) of *S. mutans* isolates had the ability to produce mutacin when inoculated on blood tryptic soy agar for 48hrs at 37°C, a 40(100%) from isolates *S. mutans* had the ability to produce dextranase. A total of *Streptococcus mutans* isolates were for their ability to produce biofilm (20)(50%), (15)(37.5%) were formed strong and moderate biofilm respectively, 5(12.5%) were weak biofilm formation. The 25(62.5%) of isolates which had ability to produce CFA/I, while the ability of isolates for produce CFA/III were less 20(50%), whereas CFA/II do not produce this factor, as table (1).

<table>
<thead>
<tr>
<th>Virulence factor of str. mutans</th>
<th>No. and % of positive result</th>
<th>No. and % of negative result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemolysin</td>
<td>30(75%)</td>
<td>10(25%)</td>
</tr>
<tr>
<td>Capsule</td>
<td>20(50%)</td>
<td>20(50%)</td>
</tr>
<tr>
<td>Glucan</td>
<td>40(100%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Mutacin</td>
<td>15(37.5%)</td>
<td>25(62.5%)</td>
</tr>
<tr>
<td>Dextranase</td>
<td>40(100%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Colonization factor antigenI</td>
<td>25(62.5%)</td>
<td>15(37.5%)</td>
</tr>
<tr>
<td>Colonization factor</td>
<td>0(0%)</td>
<td>40(100%)</td>
</tr>
</tbody>
</table>
Table (1): Virulence factors of *Streptococcus mutans*

<table>
<thead>
<tr>
<th></th>
<th>Strain 1</th>
<th>Strain 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>antigen II</td>
<td>20(50%)</td>
<td>20(50%)</td>
</tr>
<tr>
<td>Colonization factor</td>
<td>20(50%)</td>
<td>20(50%)</td>
</tr>
<tr>
<td>antigen III</td>
<td>40(100%)</td>
<td>0(0%)</td>
</tr>
<tr>
<td>Biofilm formation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-Detection of Glycoasyltransferase Gene (gtfB)

Polymerase chain reaction technique has been used to amplify Glycoasyltransferase gene (gtfB) from genomic DNA of all *Streptococcus mutans* isolates. Isolates with specific forward and reverse primer, which responsible for glucoasyltransferase enzyme. The results were shown in Fig(2).
Figure (2) : Agarose Gel Electrophoresis (1%) of PCR Amplified of

\(\text{oefr} \) gene (497) bp of Str. Mutans isolates for (55) min at 100 Volt.

- **Lane (1)** Marker (1kb DNA ladder).

- **Lane (2)** (2, 3, 4, 8, 9, 10,11,12,14,15,16,17,18,19) were positive result

- **Lane (3)** (5,6,7,13) were negative result

The discussion

Streptococcus mutans characterization

Streptococcus mutans appear as pairs or short chains in microscope examination. The biochemical tests of *streptococcus mutans* involved its ability to ferment lactose, sucrose, mannitol, sorbitol, glucose, inulin, raphanose, ribose sugar and grow (Acid/Acid) on kligler iron agar and negative for simmone citrate, urease, oxidase, catalase test.

Email: biomgzn.sci@uokufa.edu.iq
while positive for Voges Proskeur test and methyl red, and the bacteria is not tolerant to NaCl concentrations at (6.5%), (Beighton et al., 1991; Hardie, 1986). API20strep system is used to confirm identification of streptococcus mutans.

The present study identifies some virulence factors associated with pathogenicity of Streptococcus mutans. It is observed that 30 (75%) from isolates for streptococcus mutans produce haemolysis which causes partial hydrolysis of RBCs on blood agar, (Clarke, 1924). It was observed that 20 (50%) isolates of Streptococcus mutans were capsule produced (Hardie, 1986). According to the results all isolates of streptococcus mutans were to produce glucan 40% and 15 (37.5%) mutacin. The dextranase is important virulence factors for streptococcus mutans bacteria and all isolates of Str. mutans to produce Dextranase. Streptococcus mutans produce 40 (100%) from Dextranase when they grow on Dextranase medium. The study demonstrates that streptococcus mutans are able to produce (95%) biofilm. It was appeared that the 20 (50%) and isolates contain 25 (62.5%) CFA/III CFA/I (Adegbola & Old, 1983; Keller et al., 1998).

The results show that the glucosyltransferase (gtfB) gene in this study were (22%) of isolate as shown in figure (2). The gtfB gene is observed as responsible for disease occurrence as caries. The Glucosyltransferase B is an enzyme produced by Streptococcus mutans, which catalyzes synthesis from sucrose of insoluble glucans that provide support to the biofilm. It is one of the main virulence factors in the generation of dental caries.
The Mutans streptococci use sucrose to produce extracellular glucan, a water insoluble polysaccharide, which enables the bacteria to attach to the tooth surface and also protects them from external factors such as mechanical disruption, salivary clearance, and antimicrobial substances (Tinanoff et al., 2002).

References:

- Christensen, G P.; simpson, W.A.; younger, JJ.;Baddour, L.M.;Barrett, Melton, D.M.; Beachey, E.H.(1985). Adherence of
coagulase–negative staphylococci to plastic. Tissue culture plates
quantitative model for the adherence of staphylococci to medical

- Clarke, JK.(1924). On the bacterial factor in the aetiology of dental
caries .British Journal of Experimental pathology ;5:141-147.colby
SM ,Harrington.

Mackin and McCartney Practical Medical Microbiology. 14th ed.
The Churchill Livingstone, Inc. U.S.A.

systematic bacteriology. Volume 2. Sneath PHA, Mair NS, Sharpe
ME, Holt JG, eds. Williams & Wilkins: Baltimore, Maryland; pp.
1059-1063.

- Holt, JG.; Krieg, NR.; Sneath, PHA.; Staley, JT.; Williams, ST.;
Williams & Wilkins: Baltimore, Maryland; pp. 20& 527-558.

Occurrence of virulence – associated properties in Enterobacter
cloacae . Infection and Immunity. American Society for

- MaccFadin,J.K. (2000). Biochemical test for identification of

