Bacteriological study of *Enterobacter* spp. that isolated from different clinical specimens

Intidhaar Na’eem Abid
Assis.Prof Dr. Mahdi H. Al-Amaar
Dep. Pathological analysis –
Dep.Biology –College of science
College of science
Kufa University

Summary

The clinical specimens (718) were collected from inpatients and outpatients suffering from different infectious from (Al-Hussein, Maternity and Children, Surgical) hospitals and general laboratory health in Al-Nassiriyah city during the period from February 2011 to June 2012. *Enterobacter* isolates which were diagnosed according cultural and biochemical tests as well as API 20E. Eighty four isolates of *Enterobacter* were collected (32%) among G- ve and (18%) from total isolates. It was distributed to 25(21%) from urine, 16 (19%) skin and soft tissues, 11 (23%) stool, 11 (17%) burn infections, 10 (22%) ENT, 5 (28%) blood, 3 (100%) CSF and 3 (12%) post operations wounds, and two species of *Enterobacter*, *E.cloacae* (89.3%) and *E.sakazakii* (10.7%) were diagnosed. The virulence factors of bacteria were detected and the results showed that all isolates were produced of siderophore, and most isolates were capsule formation, but give negative result for haemolysin and protease. Also, 80 (95%) of *Enterobacter* has the CFA / III and 15(18%) of isolates are bacteriocin production.

Introduction

Enterobacter spp. belonging to the family Enterobacteriaceae which are facultative anaerobic gram – negative bacilli, most species are motile with flagella and have class 1 fimbriae (Patrson *et al.*, 2005). They produce acid upon glucose fermentation, methyl red negative, and Voges-Proskauer positive, with an optimal growth temperature 30° C, 80% are capsulated (Hart, 2006), as well as certain biochemical properties, including the ability to
synthesize an enzyme known as ornithine decarboxylase, which is used to distinguish Enterobacter from the very similar and closely related Klebsiella bacteria.

Enterobacter spp. are considered opportunistic pathogens as other members of Enterobacteriaceae, these organisms produce significant virulence factors, such as endotoxins, that can mediate fatal infections, however, because they generally do not initiate disease in healthy, uncompromised human hosts, they are considered opportunist (Forbes et al., 2007). In human, multiple Enterobacter species are known to act as opportunistic pathogens, including E. cloacae, E. aerogenes, E. sakazakii, E. gergoviae, and E. agglomerans. Enterobacter spp. Which can cause numerous infections, including eye and skin infections, meningitis, bacteremia, pneumonia, urinary tract infections, wound, intestinal infections and surgical site infections (Grimont & Grimont, 2006; Farmer et al., 2007).

Enterobacter spp. involved in extra intestinal infections are known to possess virulence-associated characteristics that distinguish them from random fecal isolates (Eisenstein & Jones, 1988). Virulence factors are determine the initiation, development, and outcome of an infection involve a series of complex and shifting interaction between the host and the microorganism which can vary with different infecting microbes (Brodgen et al., 2000), these factors lies within cell structure or secretes are outside the body such as enzymes and toxins. These virulence factors such as haemolysin, capsule, protease, siderophore, colonization factor antigen (CFA) and bacteriocin (Hurst et al., 1996). Because, the incidence of infection caused by Enterobacter spp. is increasing and littleness studies related to its ability to produce the virulence – associated properties, for these reasons, the aims of study was achieved by:

1 - Isolation and identification of Enterobacter species from different clinical specimens.

2- Detection some virulence factors such as haemolysin, capsule, protease, siderophore, colonization factor antigen (CFA), bacteriocin.
Materials and Methods.

Identification of bacteria

A single colonies were isolated from primary positive cultures (on MacConkey, CHROM™, EMB and XLD agar) and identified by morphological, biochemical tests and API 20 E (BioMerieux, France) according to the criteria of (Holt et al., 1994; Collee, et. al., 1996; MacFaddin, 2000).

Detection of virulence factors

1. Hemolysin production was detection according to method of Baron et al. (1994).

2. Capsule stain

 The capsule was stained according to method of Cruickshank et al. (1975)

3. Detection of protease production

 By method of (Coque et al., 1995; Elsner et al., 2000).

4. Colonization Factor Antigen (CFA)

 (Ofek et al., 1977).

5. Siderophore production

 The test was performed according the method of El-Sanousi et al. (1987) by transport a small amount of pure colony by sterile woody stick to M9 medium and the medium was incubated at 37°C for 24 hr., the results registered by depending on presence of bacterial growth on the medium.

6. Detection of bacteriocin production

 Cup assay method was carried out (AL-Qassab & AL- Khafaji, 1992).

Results

Distribution of Enterobacter isolates
Eighty four isolates of *Enterobacter* spp were isolated from 718 specimens that were collected from different infections during the period from February 2011 to June 2012, were cultured on different media such as MacConkey agar, CHROMTM, EMB, XLD agar, the identification of bacterial isolates were depending on morphological, biochemical tests and API 20E kit, represented by: 25 (21%) isolates from urine, 16 (19%) from skin and soft tissue, 11 (23%) from stool, 11 (17%) from burns, 10 (22%) from ENT, 5 (28%) from blood, 3 (100%) from CSF and 3 (12%) from post surgical wounds (Table 1).

Table (1): Numbers of *Enterobacter* isolates from different clinical specimens

<table>
<thead>
<tr>
<th>Type of specimens</th>
<th>No. of specimens</th>
<th>No.&(%) of negative specimens</th>
<th>No.&(%) of positive specimens</th>
<th>No.&(%)(of G- bacteria</th>
<th>No.&(%)(of G+ bacteria</th>
<th>No.of Enterobacter isolates</th>
<th>(%) of Enterobacter isolates among G- bacteria</th>
<th>(%) of Enterobacter isolates among positive specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine</td>
<td>225</td>
<td>107(48%)</td>
<td>118(52%)</td>
<td>77(65%)</td>
<td>41(35%)</td>
<td>25</td>
<td>32%</td>
<td>21%</td>
</tr>
<tr>
<td>Skin & soft tissues</td>
<td>114</td>
<td>30(26%)</td>
<td>84(74%)</td>
<td>26(31%)</td>
<td>58(69%)</td>
<td>16</td>
<td>62%</td>
<td>19%</td>
</tr>
<tr>
<td>Stool</td>
<td>50</td>
<td>2(4%)</td>
<td>48(96%)</td>
<td>46(96%)</td>
<td>2(4%)</td>
<td>11</td>
<td>24%</td>
<td>23%</td>
</tr>
<tr>
<td>Burns</td>
<td>81</td>
<td>15(19%)</td>
<td>66(81%)</td>
<td>53(80%)</td>
<td>13(20%)</td>
<td>11</td>
<td>21%</td>
<td>17%</td>
</tr>
<tr>
<td>ENT</td>
<td>58</td>
<td>12(21)</td>
<td>46(79%)</td>
<td>26(57%)</td>
<td>20(43%)</td>
<td>10</td>
<td>38%</td>
<td>22%</td>
</tr>
<tr>
<td>Blood</td>
<td>50</td>
<td>32(64%)</td>
<td>18(36%)</td>
<td>6(33%)</td>
<td>12(67%)</td>
<td>5</td>
<td>83%</td>
<td>28%</td>
</tr>
<tr>
<td>CSF</td>
<td>40</td>
<td>37(92.5)</td>
<td>3(7.5%)</td>
<td>3(100%)</td>
<td>0(0%)</td>
<td>3</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Postsurgical wounds</td>
<td>40</td>
<td>(37.5%)</td>
<td>(62.5%)</td>
<td>14(56%)</td>
<td>11(44%)</td>
<td>3</td>
<td>21%</td>
<td>12%</td>
</tr>
<tr>
<td>Sputum</td>
<td>60</td>
<td>8(13%)</td>
<td>52(87%)</td>
<td>12(23%)</td>
<td>40(77%)</td>
<td>0</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>718</td>
<td>258(36%)</td>
<td>460(64%)</td>
<td>263(57%)</td>
<td>197(43%)</td>
<td>84</td>
<td>32%</td>
<td>18%</td>
</tr>
</tbody>
</table>

http://iasj.net/iasj?func=issues&jId=129&uiLanguage=en
E.mail: biomgzn.sci@uokufa.edu.iq
These isolates contained two species: *E.cloacae* in the first order which registered 75 isolates (89.3%), and *E.sakazakii* (9) isolates (10.7%) (Table 2).

Table (2): Distribution of Enterobacter species

<table>
<thead>
<tr>
<th>Enterobacter species</th>
<th>No. of isolates</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.cloacae</td>
<td>75</td>
<td>89.3</td>
</tr>
<tr>
<td>E.sakazakii</td>
<td>9</td>
<td>10.7</td>
</tr>
<tr>
<td>Total</td>
<td>84</td>
<td>100</td>
</tr>
</tbody>
</table>

The distribution of bacterial isolates on clinical specimens, was appeared that the *E.cloacae* was registered higher rate of its in urine sample (100%), followed by skin and soft tissues (87.5%), while it don’t appeared in sputum specimens (Table 3).

Table (3): Distribution of Enterobacter species on clinical specimens

<table>
<thead>
<tr>
<th>Type of specimens</th>
<th>No.&(%) of Enterobacter species</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E.cloacae</td>
<td>E.sakazakii</td>
</tr>
<tr>
<td>Urine</td>
<td>25(100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Skin & soft tissues</td>
<td>14 (87.5%)</td>
<td>2 (12.5%)</td>
</tr>
<tr>
<td>Stool</td>
<td>7(63.6%)</td>
<td>4 (36.4%)</td>
</tr>
<tr>
<td>Burns</td>
<td>8(72.7%)</td>
<td>3 (27.3%)</td>
</tr>
<tr>
<td>ENT</td>
<td>10(100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Blood</td>
<td>5(100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>CSF</td>
<td>3(100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Post surgical wounds</td>
<td>3(100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Sputum</td>
<td>0(0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Total</td>
<td>75(89.3%)</td>
<td>9 (10.7%)</td>
</tr>
</tbody>
</table>

Virulence factors of Enterobacter species
The results of virulence factors of *Enterobacter* isolates, show that all *Enterobacter* didn’t produced any type of hemolysin (table 4).

All isolates of *Enterobacter* species had apolysaccharide capsule surrounding the bacterial cell except one isolate of *E.cloacae* that lack capsule structure (98.8% versus 1.2%).

From the results, it was appeared two species of *Enterobacter* isolates doesn't produce extracellular protease. On the other hand, all isolates of *Enterobacter* have the ability to produce siderophore 84 (100%).

Table (4): Virulence factors of *Enterobacter* species

<table>
<thead>
<tr>
<th>Virulence factors</th>
<th>E.cloacae n=75</th>
<th>E.sakazakii n=9</th>
<th>No. & (%) of all positive isolates</th>
<th>No. & (%) of all negative isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. & (%) of positive isolates</td>
<td>No. & (%) of negative isolates</td>
<td>No. & (%) of positive isolates</td>
<td>No. & (%) of negative isolates</td>
</tr>
<tr>
<td>Hemolysin</td>
<td>0 (0%)</td>
<td>75 (100%)</td>
<td>0 (0%)</td>
<td>9 (100%)</td>
</tr>
<tr>
<td>Capsule</td>
<td>74 (98.7%)</td>
<td>1 (1.3%)</td>
<td>9 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Extracellular Protease</td>
<td>0 (0%)</td>
<td>75 (100%)</td>
<td>0 (0%)</td>
<td>9 (100%)</td>
</tr>
<tr>
<td>Siderophore</td>
<td>75 (100%)</td>
<td>0 (0%)</td>
<td>9 (100%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>
Table (5) shows 32% of isolates were had ability to produce CFA / I , while the ability of isolates for produce CFA /II were less (10 %) , whereas E. Sakazakii isolates were don’t produced this factor .

The high production of CFA, was appeared in produce of CFA / III, (95%) of Enterobacter isolates were production this factor.

Table (5): Colonization Factor Antigens of Enterobacter species

<table>
<thead>
<tr>
<th>Virulence factors</th>
<th>E.cloacae N= 75</th>
<th>E.sakazakii n=9</th>
<th>No. & (%) of all positive isolates</th>
<th>No. & (%) of all negative isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. & (%) of positive isolates</td>
<td>No. & (%) of negative isolates</td>
<td>No. & (%) of positive isolates</td>
<td>No. & (%) of negative isolates</td>
</tr>
<tr>
<td>CFA / I</td>
<td>21 (28%)</td>
<td>54(72)</td>
<td>6 (66.7%)</td>
<td>3(33.3%)</td>
</tr>
<tr>
<td>CFA /II</td>
<td>8 (11%)</td>
<td>67(89%)</td>
<td>0(0%)</td>
<td>9(100%)</td>
</tr>
<tr>
<td>CFA/II I</td>
<td>71(95%)</td>
<td>4(5%)</td>
<td>9(100%)</td>
<td>0(0%)</td>
</tr>
</tbody>
</table>

The Bacteriocin production was investigated using two type of indicator bacteria: E.coli and Klebsiella pneumoniae , in related of use E.coli as indicator, it was founded, 15 isolates (17.9%) of total bacterial isolates 84 of Enterobacter were able to produce bacteriocin , were represented by 9(12%) isolates of E.cloacae and 6(66.7%) of E.sakazakii , while it was found that the bacteriocin Enterobacter isolates not affect on Klebsiella pneumoniae(Table 6).
Table (6): Bacteriocin production of *Enterobacter* species

<table>
<thead>
<tr>
<th>Virulence factors</th>
<th>E. cloacae n=75</th>
<th>E. sakazakii n=9</th>
<th>No. & (%) of all positive isolates</th>
<th>No. & (%) of all negative isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>9 (12%)</td>
<td>6 (66.7%)</td>
<td>15 (18%)</td>
<td>69 (82%)</td>
</tr>
<tr>
<td>**</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>84 (100%)</td>
</tr>
</tbody>
</table>

*: E.coli , **: Klebsiella pneumoniae

Discussion

Enterobacter spp isolation and identification

Recent study were included isolation of *Enterobacter* spp. from different of clinical specimens (urine, skin and soft tissues infection, stool, burns, CSF, post surgical wounds and sputum), the result were appeared that, the total infections rate of *Enterobacter* spp. was 18% from total positive specimens and 32% from total G-bacteria.

These results are similar to those reports of NNIS (1997) that demonstrated, *Enterobacter* species were caused 11.2% of infections in all types of ICUs, the corresponding rates among patients in pediatric ICUs were 6.8% for blood stream infections and 9.5% for UTIs. Recent study was registered high rate of *E. cloacae* in clinical specimens than in *E. sakazakii*, this relatively high prevalence of *E. cloacae* may be result from widely distribution in the environment, this bacteria occurs as a saprophyte in water, sewages,
soil, meat, skin and commensal in the intestinal tracts of humans and animals (Dudley et al., 1980; Eisenstein & Jones, 1988; Sommers, 1985). It was appeared from our results E.cloacae was registered higher rate in urine specimens, this may be resulted from presence this bacteria in the normal flora of the human gastrointestinal tract and transferred to infected urinary tract (Grimont & Grimont, 2006). Pead & Maskell (1977) found the most of UTIs were resulted from bacteria that present in intestinal tract. E.cloacae also was appeared in high rate in skin & soft tissue infections, the source of these infection may be result from colonization of the skin by this bacteria as normal flora and caused endogenous infection (Fraser et al., 2010).

Oral and intestinal colonization with E.sakazakii may be associated with ingestion of contaminated food (Galili et al.,1995; O’Hara & Miller, 2003).

E.sakazakii is an important emerging neonatal pathogen, associated with outbreaks of necrotizing enterocolitis (NEC) (Mullane et al., 2007), it is prevalent in certain milk-based powdered infant formula, cereals, chocolate, potato flour (Biering et al., 1989).

In relation of virulence factors of these bacteria. The results of recent study, show that all isolates of Enterobacter (E.cloacae and E.sakazakii) did not produce haemolysin (γ - hemolytic). These results are in agreement with Keller et al.,(1998) who found non of 57 Enterobacter spp. tested were hemolytic. The results shown that most Enterobacter isolates had a capsule surround the bacterial cell. These results are partial agreement with those obtained by Salman (2006) who found all isolates of E. cloacae that isolated from UTIs had a capsule.

Protease is one of virulence factors of many microorganisms, it assist the hydrolysis of large polypeptides cell (Beynom & Bond, 1989). The study results revealed that, all isolates of Enterobacter were negative for this factor, these results are partial agreement with results obtained by Salman (2006) who found non of 9 isolates of E.cloacae have the ability to produce extra cellular protease. The search for the production of colonization factor antigens among Enterobacter isolates in this study has demonstrated that more isolates were...
possessed CFA/III compatible with the presence of type 3 fimbriae (mannose-resistant fimbriae). These results are identical with study results of Clegg & Gerlach (1987) whom were isolated this factor from Enterobacter spp. this factor is responsible for colonization the surfaces of indwelling devices (e.g. urinary catheters) (Mobley et al., 1988).

CFA/ I also was found in isolates of Enterobacter but in percentage less than that in CFA/ III; Adegbola & Old (1983); Keller et al.(1998) they found mannose-sensitive hemagglutinin (MSHA) or type 1 fimbriae in most strains of E. cloacae.

The relationship between this factor and pathogenisity of bacteria was established from adherence of bacteria in mucous surfaces or epithelial cells of genital, urinary, respiratory and gastric tract (Venegas et al.,1995). It was appeared that the lower presence of colonization factor antigens among isolates was CFA/II. This factor causes agglutination of chicken blood, and act to adhere of bacteria with specific and complex carbohydrate receptors of epithelial cells of small intestine (Ram et al., 1995).

As shown in the results all Enterobacter isolates are able to produce siderophore. Der Vartanian et al. (1992) have suggested that aerobactin influences either the extent of bacterial translocation from the intestinal tract, the extent of bacterial multiplication in tissues following translocation, or both. Thus, aerobactin secretion in vivo could be an important step in the stages of the infection cycle during which intestine – population opportunistic bacteria effectively colonize the gut, penetrate the mucous layer covering the intestinal villi, translocate out of intestinal lumen through the epithelial cells, and finally spread to organs within which they may survive. These results are partial agreement with those obtained by Keller et al.(1998) that found 72.2% of E. cloacae that are able to produce siderophore.

Bacteriocin are antimicrobial peptides with different sizes, microbial target and mechanisms of action produced by large variety of bacteria. They are characterized by a bactericidal or bacteriostatic activity against strains of the same species or closely related species and differ from most therapeutic...
antibiotics due to their narrow activity spectrum and their proteinaceous nature (Riley & Chavan 2007).

Cup assay method was used for detection of bacteriocin production from Enterobacter isolates against other bacteria types which is E.coli and Klebsiella pneumoniae (sensitive bacteria). It was found low percentages of Enterobacter isolates (E. cloacae, E. sakazakii) are able to produce bacteriocin only against sensitive bacteria E.coli. This low production of bacteriocin may be due to siderophore production that can inhibit the activity of bacteriocin (VanTiel-Menkveld et al., 1982) such receptor for the uptake siderophore also functions as receptor for the bacteriocin (cloacin)(Bouchet et al., 1994).

The results were appeared, Enterobacter bacteriocin were active against E.coli, but were inactive against Klebsiella pneumoniae, this may be due to the growth inhibitor products of the Enterobacter strains used for typing are different in nature (Bauernfeind et al., 1981). These results are identical with (Traub et al. (1982); Salman (2006)) they found Enterobacter bacteriocin was inactive against Klebsiella pneumoniae, but these results are disagreement with results of Riley et al. (2003) that the activity of Enterobacter bacteriocin was affected not only Enterobacter spp., but also other related bacteria such as Klebsiella pneumoniae.

http://www.uokufa.edu.iq/journals/index.php/ajb/index/
http://iasj.net/iasj?func=issues&jId=129&uiLanguage=en
E.mail: biomgzn.sci@uokufa.edu.iq
شملت الدراسة جمع 718 عينة مختلفة من المرضى الراقدين والوافدين الذين يعانون من إصابات مرضية مختلفة لكل من مستشفيات الاحسين التعليمي، الولادة والأطفال، الجراحى العام. ومختبر الصحة العام في مدينة الناصرية خلال الفترة من شباط لسنة 2011 إلى حزيران لسنة 2012. شُخصت عزلات بكتيريا Enterobacter باستخدام الفحوصات المظهرية والبايوكيميائية إضافة إلى نظام API 20 E. السالبية لصبغة كرام و 18% من بين جميع العزلات البكتيرية (السالبية والموجبة لصبغة كرام)، توزعت إلى 25 (21%) من الإيدز، 16 (19%) من الجلد والأنسجة الرخوة، 11 (23%) من البراز، 11 (17%) من الحروق، 10 (22%) من مسحات الأذن والأنف والحنجرة، 5 (28%) من عينات الدم، 3 (100%) من سائل النخاع الشوكي، و3 (12%) من مسحات جروح العمليات الجراحية. تم عزل نوعين من بكتيريا Enterobacter spp. هو الأكثر شيوعا في الإصابات E. cloacae و E. sakazakii. بنيت الدراسة أن النوع E. cloacae هو الأكثر شيوعا في الإصابات. المرضية المتسببة عن هذا الجنس، إذ تم الحصول على 75 عزلة (89.3%) تعود لهذا النوع وليبه النوع E. sakazakii. إذ عزل بواقع 9 عزلات (10.7%). درست بعض عوامل الضراوة لهذه البكتيريا وقد ظهر أن جميع العزلات كانت حاوية على المحافظة وتمتلك نظاما واحدا فقط للحصول على الحديد بفضلها على إنتاج السايبرورفر (siderophore) وعدم قابلية جميع العزلات على إنتاج الهيموليسين (haemolysin) وكافة إمكانيات البروتين الخارجي أظهرت النتائج أن نسبة عالية من العزلات 80% (95%) امتلكت عامل الاستيطان الثالث CFA / III القابلية على إنتاج البكتيرين. أظهرت النتائج أن نسبة عالية من العزلات 80% (95%) امتلكت عامل الاستيطان الثالث CFA / III.

References

http://www.uokufa.edu.iq/journals/index.php/ajb/index
http://iasj.net/iasj?func=issues&jld=129&uiLanguage=en
E.mail: biomgzn.sci@uokufa.edu.iq

- Coque, T.M.; Patterson, J.E.; Steckelberg, J.M. and Murray, B.E. (1995). Incidence of hemolysin, gelatinase and aggregation substance...

