Effects of Welding Parameters on Temperature Distribution and Tensile Strength of AA6061-T6 Welded by Friction Stir Welding

Dr. Majid Hameed Majeed
Assistant Professor
Middle Technical University
E-mail: drmajidhm@yahoo.com

ABSTRACT

The present research aims to study the effect of friction stir welding (FSW) parameters on temperature distribution and tensile strength of aluminum 6061-T6. Rotational and traverse speeds used were (500,1000,1400 rpm) and (14,40,112 mm/min) respectively. Results of mechanical tests showed that using 500rpm and 14mm/min speed give the best strength. A three-dimensional fully coupled thermal-stress finite element model via ANSYS software has been developed. The Rate dependent Johnson-Cook relation was utilized for elasto-plastic work deformations. Heat-transfer is formulated using a moving heat source, and later used the transient temperature outputs from the thermal analysis to determine equivalent stresses in the welded plates via a 3-D thermo-mechanical simulation. Motion due to rotation and translation of the tool induces asymmetry in the material flow and heating across the tool pin. The rotation speed results in stirring and mingling of material around the tool and the movable tool moves the stirred material from the front to the back of the tool and finishes welding process. Higher rotation speed rates create higher temperature because of higher friction heating and result in more powerful stirring and mingling of material. A good agreement is evident between experimental and Ansys results.

Key words: friction stir welding, aluminum 6061-t6, ansys, heat transfer, thermo-mechanical coupling, moving heating source.
1. INTRODUCTION
The basic theory of FSW is outstanding simple. A non-consumable rotation tool with a specially shaped pin and shoulder is entered between two edges of sheets or plates, with abutting configuration, to be joined and travelled along the line of joint. The tool has two primary functions: (a) heating the work-piece, and (b) moving the material to produce the joint. The shoulder makes firm contact with the top surface of the work-piece. Heat generated by friction at the shoulder and to a lesser extent at the pin surface, softens the material being welded. Severe plastic deformation and flow of this plasticized metal occurs as the tool is translated along the welding direction. There have been widespread benefits resulting from the application of FSW in for example, aerospace, ship-building, automotive, and railway industries, Esther, et al., 2006, Nadan, et al., 2008 and Mishra and Ma, 2005. Tool traveling and rotation speeds, among other welding parameters, are most important variables that may affect the joint properties. In view of the literature survey and to the researcher knowledge, none has settle on an optimal value for these parameters as far as it concerned with FSW of A6061, but scattered values have been found. In Soundararajan et al., 2005, work tool travel and rotation speeds were (132, 330mm/min) and (344, 500 rpm). In Somasekharan and Murr, 2006, work tool travel and rotation speeds were (90 mm/min) and (800 rpm) while in Reddy et al., 2006, work these parameters were (15 mm/min) and (800 rpm). The criterion used to define these parameters is that the values of tool traveling and rotation speeds which gives maximum tensile strength. Yousif, 2006, shown that specimen which contains FSW defects does not offer high tensile strength and elongation. In this work, two parameters are very acting in FSW: rotation speed rate (Spindle speed, rpm) and traverse speed rate (Feed rate, mm/min) along the line of joint are studied.

2. EXPERIMENTAL PART
2.1 Tool Geometry
Tool geometry designed and manufactured in this study is shown in Fig.1, which is a screw shoulder and cylindrical pin. The tool geometry plays a complicated role in material flow and in circuit controls the traverse rate at which FSW can be managed. FSW tool consists of a shoulder and a pin. The tool has two primary functions: (a) localized heating, and (b) material flow. In the initial stage of tool mixing, the heating produces at first from the friction between tool and work-piece. Some additional heating produces from deformity of material. The tool is soured until the shoulder touches the work-piece. The friction between the shoulder and work-piece results in the biggest former of heating. The shoulder also serves confinement for the heated measure of material. The second purpose of the tool is to ‘stir’ and ‘move’ the material. The tool’s welding is manufactured from M2 tool steel and have a radius of shoulder (R_s=12.5mm) and pin radius (R_p=3mm).

2.2 Milling Machine
The vertical milling machine used in this research is shown in Fig.2, which is available in mechanical laboratory- Institute of Technology -Baghdad. The parameters used in this research is explained in Table 1. A special fixture was designed and manufactured to clamp the aluminum plates when welded to decrease the joint deformation. The butt joint configuration is
obtained by securing the welding samples into a carbon steel backing plate, the backing plate was fastened into the fixture and has been adjusted to have a level surface.

2.3 Chemical Test
Chemical test had been carried out in the Laboratories of the Institute of Technology – Baghdad. For aluminum plate before welding, results of the chemical tests are given in Table 2, it shows that the alloy is AA6061-T6.

2.4 Friction Stir Welding
Due to the lack of specialized stir welding machine, a vertical milling machine was used, the milling machine was operated with variable travelling and rotation speeds. The machine has been equipped by the researcher with tool, backing plate and fixture to be appropriate for FSW. Fixture and backing plate was machined from steel available tool steel alloy (AISI type S-5).

2.5 Tensile Test
In order to investigate mechanical properties of the work piece before and after welding process, a series of tensile tests had been performed to determine the yield strength, modulus of elasticity and elongation. Fig.3 shows the specimen.

2.6 Temperature Measurement
Transient temperatures were recorder at three locations during FSW process using three gauges type thermocouples. The layout of the locations of the thermocouples are shown in Fig.4. One row of the thermocouples is placed in first, middle and end of the aluminum plates along the welding direction. The thermocouples in the row are placed at certain depth in plate, the first thermocouple is 1.5mm and the middle is 3mm and the third is 4.5mm from the top surface respectively. The location of thermocouples were at 13.5mm from the weld’s centerline. These locations (three) were corresponding to the tool pin’s edge. Drilling the holes from the bottom side of the plate, then beaded the thermocouples at the tip and the measuring points, with glue having highly thermal conductivity. The transient temperature from the thermocouples were recorded.

3. THEORETICAL PART
One of the key elements in the friction stir welding process is the generation of heat in the interface surface between the tool and the work-piece, this made the force to generate the FSW process successful. The temperature distribution varies with time and space, hence a three dimensional transient isotropic with moving heat source model was used to simulate FSW thermal process. The general heat transfer equation is:

\[\rho C_p(T) \frac{\partial T}{\partial t} = K(T) \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \dot{Q} \]

(1)

The boundary conditions in the FSW was the energy loss by heat convection, \textit{Nandan, et al., 2006}, as in the following equation:

\[Q_{\text{conv}} = h(T - T_\infty) \]

(2)

And convection coefficient for the work-piece / backing plate \((Q_{\text{back}})\) is calculated as in the following equation, \textit{Soundararajan et al., 2005} and \textit{Nandan et al., 2007}.

26
And another boundary condition was the radiation heat loss by the following equation:

\[Q_{rad} = e F \sigma_{SB} (T^4 - T_{\infty}^4) \] \hspace{1cm} (4)

Heat generation during friction stir welding arises from two main sources, the first one is the deformation of the material around the tool, and the second is the friction at the surface of the tool, Sarmad, 2010. Frictional heat for the shaft rotating at rubbing angular speed of \((1 - \delta)\omega\) is:

\[dQ_s = (1 - \delta) \omega \ dM \]

where the torque \(dM = \mu p r \ dA = 2\pi\mu r^2 \ dr\)

hence \(dQ_s = 2\pi\mu(1 - \delta) \omega \ p \ r^2 \ dr\) \hspace{1cm} (5)

where \(\delta\) is between 0.6 and 0.85, Nandan et al., 2007 and Hani et al., 2013. Hence, the total frictional heat of shoulder will be:

\[Q_s = \frac{2}{3} \pi (1 - \delta) \omega \ p \ R_s^3 \] \hspace{1cm} (6)

Similar concept, heat generated by lateral surface of the pin is:

\[Q_p = 2\pi(1 - \delta)\omega \ p \ L_p \ R_p^2 \] \hspace{1cm} (7)

The total heat generation is:

\[Q_T = 2\pi(1 - \delta)\omega \ p \left(\frac{R_s^3}{3} + L_p \ R_p^2 \right) \] \hspace{1cm} (8)

The empirical equation for calculating the heat input to the work-piece is given by Chao and Qi, 1998.

\[q(r) = \frac{3 Q r}{2 \pi (r_s^3 - r_p^3)} \quad \text{for} \quad r_p \leq r \leq r_s \] \hspace{1cm} (9)

The total heat input to the work-piece:

\[Q = \frac{\pi \omega F (R_s^2 + R_p^2)}{45(R_s + R_p)} \] \hspace{1cm} (10)

The frictional heating in the thin layer near the interface was treated as a surface heat generation term \(q\), Feng et al., 2007.

\[q = \frac{2 \eta F \omega}{60(R_s^2 + R_p^2)} \quad \text{for} \quad r_p < r < r_s \] \hspace{1cm} (11)

A wide range of published values for friction coefficient (\(\mu\)) is within (0.3-0.85), Dixon et al., 2007. Convection and radiative heat losses to the ambient occurs across all free surface of the work-piece and conduction losses occur from the work-piece bottom surface to the backing.
plate. The proposed model account only for frictional heat generated at shoulder and pin surface instead of modeling heat generated by plastic deformation.

4. ANSYS SIMULATION OF THE FSW
To simulate the friction stir welding (FSW) process. Several characteristics of FSW are presented, including tool-workpiece surface interaction, heat generation due to friction, and plastic deformation. A nonlinear direct coupled-field analysis is performed, as thermal and mechanical behaviors are mutually dependent and coupled together during the FSW process. A cylindrical rotating tool plunges into a rigidly clamped workpiece and moves along the joint to be welded. As the tool moved along the joint, the generation of heat through friction between the tool shoulder and the workpiece. Additional heat is generated by plastic deformation of the workpiece material. The generated heat results in thermal softening of the workpiece material. The model consists of a coupled-field solid element with structural and thermal degrees of freedom. The temperature rises at the contact interface due to frictional contact between the tool and workpiece. The simulation welds two 6061-T6 aluminum plates (workpiece) with a cylindrical shape tool, as shown in Fig.5. Two rectangular shaped plates are used as the workpiece. The plate size is (330x184x6.5 mm). The tool shoulder diameter is (25 mm). Both the workpiece (Aluminum plates) and the tool are modeled using coupled-field element SOLID226 with the structural-thermal option (KEYOPT(1) =11). Surface-to-surface contact pair TARGE170 and CONTA174 is used. To simulate a perfect thermal contact between the plates, a high thermal contact conductance (TCC) of 2x10^6 W/m^2 °C is specified. The tool plunges into the work piece, rotates, and moves along the weld line. Because the frictional contact between the tool and workpiece is primarily responsible for heat generation, a standard surface-to-surface contact pair is defined between the tool and workpiece ,Ansys, help,2014. The CONTA174 element is used to model the contact surface on the top surface of the workpiece, and the TARGE170 element is used for the tool. A low TCC value (10 W/m^2 °C) is specified for this contact pair because most of the heat generated transfers to the workpiece. The coefficient of friction (0.4 to 0.2) is defined (TB,FRIC with TBTEMP and TBDATA). A multipoint constraint (MPC) algorithm with contact surface behavior defined as bonded always is used to constrain the contact nodes to the rigid body motion defined by the pilot node. Thermal properties of the AA6061-T6 plates , Prasanna, et al., 2010 and Zhu and Chao, 2004. such as thermal conductivity, specific heat, and density and Mechanical properties of the plates such as Young’s modulus and the coefficient of thermal expansion are temperature-dependent shown in Table 3. To simulate the material of the workpieces in the analysis, using a temperature and strain rate dependence law of material was used using the elastic-plastic Johnson-Cook material model , Johnson and Cook, 1983. which is given by:

\[
\sigma_y = [A + B(\varepsilon^{pl})^n]\left[1 + Cln\left(\frac{\dot{\varepsilon}^{pl}}{\varepsilon_o}\right)\right] \left[1 - \left(\frac{T-T_{ref}}{T_{melt}-T_{ref}}\right)^m\right]
\]

(12)

where \(\sigma_y\) is the yield stress, \(\varepsilon^{pl}\) is the effective plastic strain, \(\dot{\varepsilon}^{pl}\) is the effective plastic strain rate, \(\varepsilon_o\) is the normalizing strain rate (typically, 1.0 /s). \(A, B, C, n, T_{melt},\) and \(m\) are material constants, which are listed in Table 4. \(T_{ref}\) is the temperature of ambient, that is 22 °C in this case. The model of material was plasticity’s model with the law of hardening and dependent rate. Fig.6 shows stress strain curves for Johnson-Cook hardening at various temperatures. Thermal and mechanical boundary conditions imposed on the FSW model. The workpiece is fixed by clamping each plate , Zhu and Chao, 2004. The clamped portions of the plates are constrained in all directions. The loading represented by rotating tool moves along the weld line.
The tool plunges into the workpiece at a very shallow depth, then rotates to generate heat. The depth and rotating speeds are the critical parameters for the weld temperatures. Three cases are studies in this paper according to the changing the parameters as in Table 1. Spindle speed and the feed rate. A nonlinear transient analysis is performed using structural-thermal options of SOLID226 and CONTA174.

5- RESULTS AND DISCUSSION

5.1 Stress-Strain Diagrams
Fig.7 shows the three welding aluminum plates by FSW with different spindle speed and feed rate mention in Table 1. From each resulted plate, two tensile specimens are cut, one at the start of the plate and the other at the end of the plate as shown in Fig.8. The result’s stress – strain diagrams shown in Fig.9.

5.2 Temperature Distribution
Tool design influences heat generation, plastic flow, the power required and the uniformity of the welded joint. The shoulder generates most of the heat, while both the shoulder and the tool pin affect the material flow. Motion due to rotation and translation of the tool induces asymmetry in the material flow and heating across the tool pin. The rotation speed results in stirring and mingling of material around the tool and the movable tool moves the stirred material from the front to the back of the tool and finishes welding process. Higher rotation speed rates create higher temperature because of higher friction heating and result in more powerful stirring and mingling of material. However, it should be noted that friction between the tool surface and work-piece is going to govern the heating. The calculated frictional heat generation and plastic heat generation show that the friction between the tool shoulder and workpiece is responsible for generating most of the heat. Heat-transfer is formulated using a moving heat source, and later used the transient temperature outputs from the thermal analysis to determine equivalent stresses in the welded plates via a 3-D thermo-mechanical simulation. Table 5 shows the results of FSW in using the three parameters study were (500,1000,1400 rpm) and (14,40,112 mm/min) respectively and tensile strength for each case also the elongation in each case.
Results of mechanical tests showed that using 500rpm and 14mm/min speed give the best strength, hence Fig.10 shows the temperature distribution in case of (500rpm and feed 14mm/min) and Fig.11 shows the stress distribution in this case. Figs. 12 and 13 show plastic heat rate against time and frictional heat rate against time respectively. Fig.14 shows resulting temperature profile as taken from experiment and ANSYS, for the purpose of comparison, it can be observed that the peak temperature resulting from transient thermal analysis is more than experimental results since the lack of accuracy in modeling of heat transfer. In actual case heat transfer through the fixture will increase the cooling process of the workpiece.

6. CONCLUSIONS
The results of temperature distribution and stresses are significantly changed with changing the rotational and traverse speeds used (500,1000,1400 rpm) and (14,40,112 mm/min) respectively. These parameters affect the temperature values and distribution. Results of mechanical tests showed that using 500rpm and 14mm/min speed give the best strength. A three dimensional heat transfer model was successfully developed to predict the temperature at different parameter. It can be observed that heat generated from the friction is approximately 90% transferred to the workpiece. A good agreement is evident between the experimental and Ansys results.
REFERENCES

NOMENCLATURE

\(\text{C}_{\text{p(T)}} \) temperature dependent of specific heat of work-piece, J/Kg°C
\(e \) emissivity of radiant surface (\(e=0.5 \))
\(F \) radiation view factor (\(F=1 \))
\(K_{\text{T(T)}} \) temp. dependent thermal conductivity coefficient of the work-piece, W/m°C
\(\dot{Q} \) rate of heat generation , W
\(Q_{\text{conv.}} \) energy loss by convection per unit area ,W
\(Q_{\text{back}} \) energy loss of by convection per unit area, W
\(Q_{\text{rad}} \) energy loss of by radiation by unit area, W
\(Q_{\text{rad}} \) energy loss of by radiation by unit area, W
\(Q_{s} \) heat generation by shoulder, W
\(Q_{p} \) heat generation by pin , W
Table 1. Notations and units of parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>temperature</td>
<td>°C, K</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
<td>sec</td>
</tr>
<tr>
<td>h, h_b</td>
<td>convection heat transfer coefficient</td>
<td>W/m²°C</td>
</tr>
<tr>
<td>T_∞, T_ref</td>
<td>absolute ambient temperature</td>
<td>°C, K</td>
</tr>
<tr>
<td>L_p</td>
<td>pin length</td>
<td>mm</td>
</tr>
<tr>
<td>R_s</td>
<td>shoulder radius</td>
<td>mm</td>
</tr>
<tr>
<td>R_p</td>
<td>pin radius</td>
<td>mm</td>
</tr>
<tr>
<td>p</td>
<td>interfacial pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>S</td>
<td>spindle speed</td>
<td>rpm</td>
</tr>
<tr>
<td>R</td>
<td>feed rate</td>
<td>mm/min</td>
</tr>
<tr>
<td>σ_y</td>
<td>yield stress</td>
<td>Pa</td>
</tr>
<tr>
<td>ε_pl</td>
<td>effective plastic strain</td>
<td></td>
</tr>
<tr>
<td>̇ε_pl</td>
<td>effective plastic strain rate</td>
<td></td>
</tr>
<tr>
<td>ε_o</td>
<td>normalizing strain rate</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>density of work-piece</td>
<td>Kg/m³</td>
</tr>
<tr>
<td>σ_{SB}</td>
<td>s-Boltzmann constant</td>
<td>(σ_{SB} = 5.67 \times 10^{-8} W/m²K⁴)</td>
</tr>
<tr>
<td>δ</td>
<td>slip factor that compensates for tool (material relative velocity)</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>tool rotational speed</td>
<td>rpm</td>
</tr>
<tr>
<td>η</td>
<td>process efficiency</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Screw shoulder and cylindrical pin.

Figure 2. Milling machine.
Figure 3. Rectangular tension test specimen, ASTM, 2005.

Figure 4. Layout of the locations of the thermocouples.

Figure 5. 3-D Model of workpiece and tool with finer mesh.
Figure 6. Plot of stress strain curve for Johnson-Cook work hardening, Mokhtar, 2007.

Figure 7. Aluminum welding plate with different condition.

Figure 8. The locations of tensile specimens were cut from the weld plates.
Figure 9. Stress-Strain diagrams for different parameters.
Figure 10. The temperature distribution in case of (500rpm and feed 14mm/min).
Figure 11. The stress distribution in case of (500rpm and feed 14mm/min).
Figure 12. Plastic heat rate against time for 500rpm and feed 14mm/min.

Figure 13. Frictional heat rate against time for 500rpm and feed 14mm/min.

Figure 14. Temperature variation with time for 500rpm and feed 14mm/min.
Table 1. Parameters studied.

<table>
<thead>
<tr>
<th>Spindle speed (S) (rpm)</th>
<th>1000</th>
<th>500</th>
<th>1400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed rate (R) (mm/min)</td>
<td>40</td>
<td>14</td>
<td>112</td>
</tr>
</tbody>
</table>

Table 2. Chemical compositions.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Al</th>
<th>Mg</th>
<th>Cr</th>
<th>Ni</th>
<th>Zn</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0.4-0.8</td>
<td>0-0.7</td>
<td>0.15-0.4</td>
<td>0-0.15</td>
<td>Bal.</td>
<td>0.8-1.2</td>
<td>0.04-0.35</td>
<td>0-0.15</td>
<td>0-0.15</td>
<td>0-0.15</td>
</tr>
<tr>
<td>Present Work</td>
<td>0.621</td>
<td>0.529</td>
<td>0.299</td>
<td>0.0852</td>
<td>Bal.</td>
<td>1.03</td>
<td>0.198</td>
<td>0.0096</td>
<td>0.0594</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Table 3. Temperature dependent material properties for Aluminum alloy 6061-T6. Chao and Qi, 1998.

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Thermal Cond. W/m°C</th>
<th>Heat Capacity J/Kg°C</th>
<th>Density Kg/m³</th>
<th>Young’s Modulus GPa</th>
<th>Yield strength MPa</th>
<th>Thermal Exp. 10⁻⁶/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.8</td>
<td>162</td>
<td>945</td>
<td>2685</td>
<td>68.54</td>
<td>274.4</td>
<td>23.45</td>
</tr>
<tr>
<td>93.3</td>
<td>177</td>
<td>978</td>
<td>2685</td>
<td>66.19</td>
<td>264.6</td>
<td>24.61</td>
</tr>
<tr>
<td>148.9</td>
<td>184</td>
<td>1004</td>
<td>2667</td>
<td>63.09</td>
<td>248.2</td>
<td>25.67</td>
</tr>
<tr>
<td>204.4</td>
<td>192</td>
<td>1028</td>
<td>2657</td>
<td>59.16</td>
<td>218.6</td>
<td>26.60</td>
</tr>
<tr>
<td>260</td>
<td>201</td>
<td>1052</td>
<td>2657</td>
<td>53.99</td>
<td>159.7</td>
<td>27.56</td>
</tr>
<tr>
<td>315.6</td>
<td>207</td>
<td>1078</td>
<td>2657</td>
<td>47.48</td>
<td>66.2</td>
<td>28.53</td>
</tr>
<tr>
<td>371.1</td>
<td>217</td>
<td>1104</td>
<td>2630</td>
<td>40.34</td>
<td>34.5</td>
<td>29.57</td>
</tr>
<tr>
<td>426.7</td>
<td>223</td>
<td>1133</td>
<td>2602</td>
<td>31.72</td>
<td>17.9</td>
<td>30.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>T_melt (°C)</th>
<th>A (MPa)</th>
<th>B (MPa)</th>
<th>C</th>
<th>n</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA 6061-T6</td>
<td>582</td>
<td>293.4</td>
<td>121.26</td>
<td>0.002</td>
<td>0.23</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Table 5. The results of FSW.

<table>
<thead>
<tr>
<th>No.</th>
<th>Material</th>
<th>Specimen No.</th>
<th>Temp. at 1.5mm depth °C</th>
<th>Temp. at 3mm depth °C</th>
<th>Temp. at 4.5mm depth °C</th>
<th>Spindle speed rpm</th>
<th>Feed rate mm/min</th>
<th>Tensile test number (1)</th>
<th>Tensile test number (2)</th>
<th>Thickness of plate mm</th>
<th>Elongation % (1)</th>
<th>Elongation % (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6061-T6</td>
<td>1</td>
<td>408</td>
<td>419</td>
<td>435</td>
<td>1000</td>
<td>40</td>
<td>113MPa (Start)</td>
<td>137MPa (End)</td>
<td>6.5</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>6061-T6</td>
<td>2</td>
<td>189</td>
<td>182</td>
<td>258</td>
<td>500</td>
<td>14</td>
<td>137MPa (Start)</td>
<td>149MPa (End)</td>
<td>6.5</td>
<td>23.5</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>6061-T6</td>
<td>3</td>
<td>282</td>
<td>228</td>
<td>315</td>
<td>1400</td>
<td>112</td>
<td>118MPa (Start)</td>
<td>134MPa (End)</td>
<td>6.5</td>
<td>15</td>
<td>23.5</td>
</tr>
</tbody>
</table>