Controllability of solutions for semilinear fractional integrodifferential equations in Banach spaces

Fawzi Mutter Ismaael
Training institute for girls in Dujail, directorate of education in Salah al-Deen, Ministry of Education

Abstract
The study aims to prove the controllability of mild solution for semilinear fractional integrodifferential equations with nonlocal conditions in Banach spaces. Fractional calculus, compact semigroups and fixed point theorem, are concepts consulted to obtain results this work.

Introduction
Studying fractional differential equations have been controversial nowadays, for type of these equations are arised in many scopes of applied mathematics and scientific disciplines such as chemistry, biology, blood flow phenomena, control theory, etc, see [1, 2]. There has been noticeable development in ordinary and partial differential equations involving Riemann-Liouville fractional derivatives, for details see [3]. Many researchers have been also extensively studied controllability problems of linear and nonlinear systems reflected in ordinary differential equations in finite dimensional spaces, see [4].

The aim of the work is to study the controllability of fractional for semilinear in integrodifferential systems with nonlocal condition in Banach spaces. The main idea used to study the controllability result for the problem (3.1) is to prove that the operator “P” defined by (3.2) is completely continuous in C(0, b; X) which guarantee the fixed point theorem of schauder, for this purpose the work is organized according to preliminaries of the fields of fractional integral and derivative maps. Finally, we build up the controllability result for the system (3.1), and this result is a generalization of the problem in [5].

1- Preliminaries:
To study and complete this work we need concepts and necessary basic.
At first, let X be areal Banach space with norm ||.||, the space of X-valued continuous functions on [0, b] denoted by ([0, b]; X) and the space of X-valued Bochner integrable functions on [0, b] denoted by L(0, b; X).

Definition (2.1), [6]:
"Let X=(x, d) and Y=(y, d) be ametric spaces, A mapping T:X→Y is said to be continuous at a point x₀∈X if for every ε>0 there is a δ>0 such that d(Tx, Tx₀)<ε for all x satisfying d(x, x₀)<δ and T is said be continuous if it is continuous at every point of X".

Definition (2.2), [7]:
"Let M be a subset of normed space X. Then the intersection of all convex subset of X containing M is the smallest convex subset of X containing M, this called the convex hull or convex envelope of M and is usually denoted by com, com=∩{A|A₁ convex and M ⊆ A₁}. The closure of the convex hull M, that is com is called the closed convex hull of M".

Definition (2.3) [8]:
"For a function f given on the fractional derivative of f is defined by
(DFⁿₓf)(t) = \(1/Γ(n-α)\) aⁿ∫ₓ(t-s)ⁿ-α⁻¹ f(s)ds, n – 1 < α < n".

Definition (2.4), [8]:
"The functional (arbitrary) order integral of the function f ∈ L¹([a, b], Rⁿ) of order α ∈ Rⁿ is defined by
\(I^nαf(t) = \int^t_α (t-s)ⁿ⁻¹ f(s)ds\), where Γ is the gamma function".

Definition (2.5), [9]:
"Let X and Y be normed spaces, the operator A:D(A) ⊆ X → Y is said to be compact : if
1. A is continuous.
2. A is transforms every bounded subset M of X into relatively compact subset of Y (A(M) is compact) ."

Definition (2.6), [10]:
"A subset U of C[a, b] is said to be equicontinuous if for each ε>0, there is δ>0 such that ||x – y|| < δ and u ∈ U, imply ||u(x) – u(y)|| <ε ".

Remark (2.7), [6]:
"A map K:X → 2^{X} (\{φ\}) is convex (closed valued) if K(x) is convex (closed) for all x ∈ X. K is bounded into bounded sets if K([0, b]) = ∪_{ε∈[0, b]} K(x) is bounded in X for any bounded set [0, b]of X".

Definition (2.8), [6]:
"A map K is called completely continuous if K([0, b]) is relatively compact for every bounded subset [0, b] of X".

Theorem (2.9), (Arzela - Ascoli’s theorem), [5]:
"Let F ∈ C ([0, b]; X) satisfy:
i) For any t ∈ [a, b], f(t) ∈ F is relatively compact in X.
ii) F is equicontinuous on [a, b], that is, for any ε>0 and any t ∈ [a, b], there exist δ > 0 such that, ||f(t) – f(s)|| < ε, for any δ ∈ [a, b] satisfying |t – s| < δ, and all f ∈ F. Then F is relatively compact”.

Theorem (2.10), [5], (Schauder’s Fixed-point theorem)
Let C be a nonempty bounded convex closed subset in X, if F:C→C is continuous and F(C) is relatively compact, then F has at least one fixed point".

3. Controllability results
In this section, given the system, $D^\alpha x(t) = \Re x(t) + B u(t) + f(t, x(t))$, $t \in [0, b], 0 < \alpha < 1$
$z(0) = z_0 \in X$ (3.1)

Is integrodifferential semilinear fractional Where $\Re(t)$ is bounded linear operator strongly continuous semigroup generated by infinitesimal \Re in Banach space X with norm $\|\|$, and D^α is Riemann–Liouville fractional derivative, $K: [0, b] \times X \to X$ is given function. X is a Banach space contains $z(\cdot)$ Values, also $L^2([0, b], \mu)$ is a Banach space, B is a bounded linear operator from \mathcal{U} into X and the control functions $u(\cdot)$ in $L^2([0, b], \mu)$.

Definition (3.1):
The system (3.1) has a solution $z: [0, b] \to X$ if the conditions (1-5) are satisfied:
$z(t) = \Re(t)z_0 + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Re(t-s)H(s,z(s))ds + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Re(t-s)Bu(s)ds$. (1)

Definition (3.2):
If there exists $u \in L^2([0, b], \mu)$ is control as, $\forall z_0, z_1 \in X$, the solution of (3.1) $z(t)$ satisfies $z(b) = z_1$, then (3.1) is controllable on $[0, b]$.

In order to demonstrate the main theorem of this section, we give the following hypotheses.

(1) $\Re(t)$ is a compact semigroup of bounded linear operator generated by the infinitesimal operator (\Re), and $\max_{t \in [0, b]} \|\Re(t)\| = M$

(2) $B: L^2(0, b; \mu) \to L^1(0, b; X)$ is bounded linear operator from a Banach space \mathcal{U} into X.

(3) $W: L^2(0, b; \mu) \to X$ is a linear operator defined by $Wu = \frac{1}{\Gamma(\alpha)} \int_0^b (b-s)^{\alpha-1} \Re(b-s)(Bu)(s)ds$, and the operator W^{-1} is inverse of W. (4) .

(i) $f: [0, b] \to X$ is strongly measurable.
(ii) $\sup_{t \in [0, b]} \|f(t, x)\| \leq \|g\| \in L^1(0, b)$, For each positive (a) and $lim_{a \to 0^+} \int_0^b ga(s)ds = \infty < \infty$, α is real number.

(5) $\alpha \in M\Re[1 + M\Re\|\Re\||W^{-1}] < 1$

Theorem (3.3):
The system (3.1) is controllable on $[0, b]$, if the conditions (1-5) are holds.

Proof:
Define the operator $P: C(0, b; X) \to C(0, b; X)$ as,

$(Pz)(t) = \Re(t)z_0 + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Re(t-s)H(s,z(s))ds + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Re(t-s)(Bu)(s)ds$, for each $z_0 \in (0, b, X)$ (3.2).

Then by using condition (3) for any $z(\cdot)$, define the control $u(t) = W^{-1} [z_1 - \Re(t)z_0 - \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Re(b-s)H(s,z(s))ds] (t)$

Next, by using $u(t)$ to show z as a fixed point of (P), so that this point is a solution of system (3.1). Therefore clear that

$(Pz)(b) = \Re(t)z_0 + \frac{1}{\Gamma(\alpha)} \int_0^b (b-s)^{\alpha-1} \Re(b-s)H(s,z(s))ds + \frac{1}{\Gamma(\alpha)} \int_0^b (b-s)^{\alpha-1} \Re(b-s)B\Re^{-1}(z_1 - \Re(t)z_0) - \frac{1}{\Gamma(\alpha)} \int_0^b (b-s)^{\alpha-1} \Re(b-s)H(t, z_0)dr$,

Now, we prove the operator (P) is continuous and convex, firstly continuously of P, so, let $z_n \to z$ in $C(0, b; X)$, then $H\left((t, z_n(t))-H(s, z(s))\right) \leq \|g\|$ and $H\left((t, z_n(t))-H(s, z_0(t))\right) \leq \|g\|$, thus in order to prove this statement, we let for each natural number $n \to \infty$

Next, we prove the operator (P) is continuous and convex, firstly continuously of P, so, let $z_n \to z$ in $C(0, b; X)$, then $H\left((t, z_n(t))-H(s, z(s))\right) \leq \|g\|$ and $H\left((t, z_n(t))-H(s, z_0(t))\right) \leq \|g\|$, thus in order to prove this statement, we let for each natural number $n \to \infty$

Hence, $\|Pz_n - Pz\| = \sup_{t \in [0, b]} \left\|\Re(t)z_0 + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Re(t-s)H(s, z(s))ds + \frac{1}{\Gamma(\alpha)} \int_0^t \|\Re(t-s)\|\|\Re(b-s)H(t, z_0)dr\|ds\right\| \to 0$

as $n \to \infty$, thus P is continuous.

Now, let $B_a = \{x \in C(0, b; X): \|z(t)\| \leq a, a \in [0, b]\}$ for each (a) positive number, so we note that the set B_a is bounded, closed and convex in $C(0, b; X)$ and the operator (P) is well defined on B_a, therefore suppose there exist appositive number (A) and we claim that $P(B_a) \subseteq B_A$ thus in order to prove this statement, we let for each natural number (a) there is (Z_a) a function such that, $Pz_a \in B_a$ and $a \leq \|Pz_a\|$

So, $a < \|Pz_a(t)\|$, for some $t(a) \in [0, b]$ therefore, $1 < a^{-1} ||Pz_a||$. then $1 \leq Lim_{a \to 0^+} a^{-1} ||Pz_a||$, and we get

$\lim_{a \to 0^+} a^{-1} ||Pz_a|| \leq Lim_{a \to 0^+} a^{-1} \left\{\|\Re(t)z_0\| + \frac{1}{\Gamma(\alpha)} \int_0^t \|\Re(t-s)\|\|\Re(b-s)H(t, z_0)dr\|ds + \frac{1}{\Gamma(\alpha)} \int_0^t \|\Re(t-s)\|\|\Re(b-s)H(t, z_0)dr\|ds + \frac{1}{\Gamma(\alpha)} \int_0^t \|\Re(t-s)\|\|\Re(b-s)H(t, z_0)dr\|ds + \frac{1}{\Gamma(\alpha)} \int_0^t \|\Re(t-s)\|\|\Re(b-s)H(t, z_0)dr\|ds\right\}$

122

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)
Moreover, for $Pz \in B$, we have $Pz \in B$. and for any A, we obtain that $V(o) = \text{precompact in } X$. Firstly $V(o)$ is precompact in X. So, let $0 \leq t \leq b$, $t \in \text{is given a real number.}$

Define

$$(Pz)(t) = \mathcal{R}(t)z_0 + \frac{1}{1 + \alpha} \int_0^1 (t-s)^{-\frac{1}{\alpha}} \mathcal{R}(t-s)H(s,z(s))ds + \frac{1}{1 + \alpha} \int_0^1 (t-s)^{-\frac{1}{\alpha}} \mathcal{R}(t-s)Bu(s)ds.$$

For the compactness of $\mathcal{R}(t)$ and $u(s)$ is bounded, we obtain that $V_E(t) = \{(Pz)(t) : z \in B_A\}$ is precompact set in X. Moreover, for $z \in B_A$ and by defined control $u(t)$, we have

$$
\|(Pz)(t) - (Pz)_e(t)\|
\leq \frac{1}{1 + \alpha} \int_0^1 (t-s)^{-\frac{1}{\alpha}} \mathcal{R}(t-s)H(s,z(s))ds + \frac{1}{1 + \alpha} \int_0^1 (t-s)^{-\frac{1}{\alpha}} \mathcal{R}(t-s)Bu(s)ds
\leq \frac{1}{1 + \alpha} \int_0^1 (t-s)^{-\frac{1}{\alpha}} \mathcal{R}(t-s)H(s,z(s))ds + \frac{1}{1 + \alpha} \int_0^1 (t-s)^{-\frac{1}{\alpha}} \mathcal{R}(t-s)Bu(s)ds.
$$

Therefore, we note that $g_A(t) \in L^1[0,b]$ and we see, as $t \to t^*$, holds

$$
\|(Pz)(t) - (Pz)(t^*)\| \to 0
$$

because it is compact. Hence (PB_A) maps B_A to a family of equicontinuous functions and also bounded. Then the operator (PB_A) is precompact in $C(0, b; X)$ by Arzela – Ascoli theorem. So P^* is completely continuous in $C(0, b; X)$ by Arzela – Ascoli theorem.
Therefore by fixed point theorem of Schauder, "P" has a fixed point in \((B_d)\), and this point is a solution of

\[
(3.1)
\]

that is satisfying \((P_2)\) \(\langle t \rangle = z (t) \in X\). Hence, the system \((3.1)\) is controllable on \([0,b]\).

References