Amelioration effect of methanolic extract of *Cyperus rotundus* on type 2 diabetes mellitus, thyroid dysfunction and gall stone induce by dexamethasone in male rabbits

Muna H. AL-Saeed

Department of Physiology, Pharmacology and Chemical, College of Vet. Med.
University of Basrah, Basrah, Iraq.

Abstract

The research investigated the possible involvement of type2 diabetes mellitus, thyroid dysfunction and gall stone induce by dexamethasone, and therapeutic effect of *Cyperus rotundus* as antidiabetic potential. This study was carried out in the animal house of the College of Veterinary Medicine - Basrah University. The rabbit was used as a model to study the effects of type2 diabetes mellitus thyroid dysfunction and gall stone induce by dexamethasone. Twenty-four healthy adult domestic rabbits were divided randomly into four groups. The first group (C) had been regarded as control each rabbit in the control group was drenched 3ml of normal saline daily by using gastric tube for 15 days. The second group (DEX) was drenched (0.35 mg / Kg B.W. single dosage) of dexamethasone tablets which were powdered, dissolved in 3ml of normal saline daily for 15 days. The third group (DEX + *Cyperus rotundus*) was drenched (0.35 mg / Kg B.W. single dosage) of dexamethasone and *Cyperus rotundus* 0.5g / Kg B.W. single dosage, dissolved in 3ml of normal saline daily for 15 days. The forth group (*Cyperus rotundus*) was drenched (0.5g / Kg B.W. single dosage) of *Cyperus rotundus*, dissolved in 3ml of normal saline daily for 15 days. *Cyperus rotundus* was administered to -induced hyperglycaemic male rabbit and the alterations in serum concentrations of thyroid hormones, total cholesterol, triglycerides and fasting glucose were studied. Simultaneously changes in lipid peroxidation, reduced glutathione (GSH) content, superoxide dismutase and catalase activities in serum (which are commonly affected in diabetes mellitus), were also investigated. Administration of dexamethasone (0.35mg/kg/day orally for 15 days) caused hyperglycaemia with a parallel increase in serum glucose, total cholesterol, triglycerides and lipid peroxidation with a decrease in serum levels of both the thyroid hormones (triiodothyronine, T3 and thyroxine, T4).

However, *Cyperus rotundus* administration (0.5 g/kg/day orally for 15 days) along with an equivalent amount of dexamethasone reverted most of these changes, including a marked an increase in the serum levels of both thyroid hormones. The present findings reveal that the test extract ameliorates corticosteroid-induced type 2 diabetes mellitus through an increase in serum thyroid hormone concentrations.

keyword: Type2 diabetes mellitus, *Cyperus rotundus*, gallstone.
المستخلص الميثانولي لنبات السعد Cyperus rotundus تأثير محسن لداء السكر النوع الثاني والخلل وظيفي للغدة الدرقية و حصى المرارة المستحدث بواسطة عقار الدكساميثازون منى حميد السعيد
فرع الفسلجة والأدوية والكيمياء, كلية الطب البيطري, جامعة البصرة.

الخلاصة
أوجددده ددد ذه هذه الدراسدة ا المسدد الم ميلددانبلت لنبدداه السددعد ددد اير م دداد لددداء السددكر النددبع اللددانت, الالدد للظيفت للغدة الدرقية وحصى المرارة المس حدث بباسطة عقار الدكساملازوا.
وقد أجريت الدراسة في البيت الحيواني لكلية الطب البيطري. جامعة البصرة على 24 من ذكور الأرانب المحلية. قسمت حيوانات التجربة بصورة عشوائية إلى أربع مجموعات: الفئة الأولى هي مجموعة الأرانب السيطرة عوملت بالحلول الفسيولوجي (آمال) لمدة 15 يوم. والمجموعة الثانية هي الأرانب التي عوملت بعقار الدكساميثازون بجرعة 0.5 مل/كم/كم يوم لمدة 15 يوما. والمجموعات الثالثة والمجموعات الرابعة عوملت بفسيولوجية مختارة من نبات السعد Cyperus rotundus بجرعات 5.1 و5.31 مل/كم/كم يوما.

Introduction
Diabetes mellitus is a loss of glucose homeostasis, it caused by inherited and or acquired deficiency in production of insulin by the pancreas, or by the ineffectiveness of the insulin produced both resulting in impaired metabolism of glucose and other energy-yielding fuels such as lipids, carbohydrates and protein, and increased risk of complication from various diseases such as heart diseases and stroke, high blood pressure, atherosclerosis, kidney and nerve damage, liver disease, amputations, endocrine pathologies (endocrine system disorders), dental disease, sexual dysfunction and immunodeficiencies as well as blindness [1].

The aetiology of type 2 diabetes mellitus is in which theβ-cells of pancreas are usually functional, very often involves hormonal imbalance [2], including that of adrenal glands [3]. In fact, the hormones of the adrenal cortex are well known for their diabetogenic effects and are responsible for most steroid diabetes [3, 4]. Despite the fact that thyroid hormones also regulate glucose metabolism and alter the antioxidant system. Dexamethasone (DEX) is a potent synthetic member of the glucocorticoid class of steroid drugs. It acts as an anti-inflammatory and immunosuppressant. It is 20 to 30 times more potent than the naturally occurring hormone cortisol [5].

Glucocorticoids caused an imbalance in lipid metabolism leading to hyperlipidemia and had more effect on causing hypertriglyceridemia but no significant effects were found on protein metabolism and induced variable effects on altering the liver enzymes including ALT and AST and produce more obvious elevations in these enzymes. Hypercholesterolemia and hypertriacylglycerolemia were detected in DEX treated rats. Administration of DEX produce causes a significant reduction in plasma concentrations of T4 and T3, and these
changes are accompanied by a sustained hyperglycaemia [6]. Herbals medicines are used now by up to 50% of western population for the treatment or prevention of several diseases, especially digestive disorder[7].

Cyperus refers to a family of marsh-dwelling grass-like plants known as sedges. Cyperus rotundus has numerous chemical constituents, many of which may show pharmacological and biological activity including antidiabetic, antidiarrhoeal, anticandida, anti-inflammatory, cytoprotective, antimutagenic, antimicrobial, antibacterial, cytotoxic and apoptotic, anti-pyretic and analgesic activities. Its extract significantly lowered the blood glucose levels. This antihyperglycemic activity can be attributed to its antioxidant activity [8]. Oral administration of Cyperus extract significantly improved liver functions[9]. The aim of the present study was to reveal the possible involvement of thyroid hormones in the antihyperglycaemic and antihypercholesteremia effects of methanolic extract of Cyperus rotundus on diabetic rabbits induce by dexamethacin .

Material and Methods

Experimental Animals

Twenty-four healthy adult domestic rabbits (Lepus cuniculus domestica) were brought from the local markets/ Basrah, Iraq of (7.5-8) months age, body weight (1500-2000) gm. Rabbits were kept for an adaptation period 1 month in the animal house of Veterinary Medicine College / Basrah University. Experimental animals were kept in individual cages, provided with ration composed fodder in addition to green alfalfa (Medicago sativa) and tap water ad libitum and given a prophylaxis drug against coccidiosis (Amprollium 1g/L of drinking water) and these animals maintained in air-conditioned quarters (24°C) under standard husbandry condition with alternate 12 hours light /dark period.

Extract preparation

The rhizomes of Cyperus rotundus were brought from the local markets/ Basrah, Iraq. The collected sample of rhizomes was air dried under shade and ground into fine powdered form. Plant material (50 g) was extracted with methanol (500 mL) in soxhlet extractor. After the extraction time the solvent was removed under reduced pressure and crude extract containing high fraction of total polyphenols was stored in refrigerator.

Experimental Design

1- The first group (C) had been regarded as control each rabbit in the control group was drenched 3ml of normal saline daily by using gastric tube for 15 days.

2- The second group (DEX) was drenched (0.35 mg / Kg B.W. single dosage) of dexamethasone tablets which were powdered, dissolved in 3ml of normal saline daily for 15 days.

3- The third group (DEX + Cyperus rotundus) was drenched (0.35 mg / Kg B.W. single dosage) of dexamethasone and Cyperus rotundus 0.5g / Kg B.W. single dosage, dissolved in 3ml of normal saline daily for 15 days.

4- The forth group (Cyperus rotundus) was drenched (0.5g / Kg B.W. single dosage) of Cyperus rotundus, dissolved in 3ml of normal saline daily for 15 days.

Collection of Blood Samples:

Blood samples (5ml) were collected from fasted male rabbits(control and treat animals), before and during experimental weekly from the heart by heparinized capillary tubes in plain tubes, and allowed to be clotted at
room temperature and put in centrifuge at 5000rpm to obtain serum were stored in polyethylene eppendorff tubes at -20°C, for hormonal assay and biochemical analysis such as (minerals, metabolic profile, enzymes) by spectrophotometers using specific kits.

Hormonal Assay.
Serum samples and plasma semen were assayed for TSH, T4, T3, testosterone, using the enzyme-linked immunosorbent assay (ELISA) technique using the Fortress kit.

Statistical Analysis:
The data were analyzed by SPSS software using one way variance analysis ANOVA, Version16. In all tests, a P-value of <0.05 was considered statistically significant [10].

Results

1-Effect of Dexamethasone and Cyperus rotundus on body weight of male rabbits.

In the Table [1] showed that effects of dexamethasone and Cyperus rotundus on body weight 1 are significant decreases (P≤0.05) in group treated with dexamethasone compared with control group and Cyperus rotundus group while group treated with dexamethasone + Cyperus rotundus showed no significant changes in body weight compared with control group and Cyperus rotundus group.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Treatments</th>
<th>Initial body weight (g)</th>
<th>Final body weight (g)</th>
<th>Body weight Gain(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (Normal salin)</td>
<td>1795 ± 86.4 A</td>
<td>1865 ± 93.54 A</td>
<td>70 ± 16.89 A</td>
</tr>
<tr>
<td></td>
<td>Dexamethasone (0.35 mg/kg B.W.)</td>
<td>1800 ± 75.23 A</td>
<td>1350 ± 67.9 C</td>
<td>-450 ± 113.64 C</td>
</tr>
<tr>
<td></td>
<td>Cyperus rotundus (0.5 g/kg B.W.)</td>
<td>1815 ± 69.25 A</td>
<td>1890 ± 58.29 A</td>
<td>75 ± 35.51 A</td>
</tr>
<tr>
<td></td>
<td>Dexamethasone + Cyperus rotundus</td>
<td>1788 ± 55.4 A</td>
<td>1835 ± 49.36 B</td>
<td>57 ± 18.39 B</td>
</tr>
</tbody>
</table>
2- Effect of Dexamethasone and Cyperus rotundus on glucose and lipid profile of male rabbits.

In the Table [2] showed that effects of dexamethasone and Cyperus rotundus on glucose cholesterol, Triglyceride and LDL are significant increases (P≤0.05) in group treated with dexamethasone compared with control group and Cyperus rotundus group while group treated with dexamethasone + Cyperus rotundus showed no significant changes in glucose cholesterol, Triglyceride, HDL and LDL compared with control group and Cyperus rotundus group.

Table2 :- Effect of Dexamethasone and Cyperus rotundus on glucose and lipid profile of male rabbits. (Mean±SD) n=6

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Glucose (mg/dl)</th>
<th>Cholesterol (mg/dl)</th>
<th>Triglyceride (mg/dl)</th>
<th>HDL (mg/dl)</th>
<th>LDL (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Normal salin)</td>
<td>108.11 ± 9.44B</td>
<td>123.53 ± 5.60B</td>
<td>60.78 ± 3.85B</td>
<td>48.66±0.53A</td>
<td>19.69±0.60B</td>
</tr>
<tr>
<td>Dexamethasone (0.35 mg/kg B.W.)</td>
<td>175.83± 8.36 A</td>
<td>225.16± 7.35 A</td>
<td>85.71± 4.94 A</td>
<td>37.21±4.29A</td>
<td>93.82±0.12A</td>
</tr>
<tr>
<td>Cyperus rotundus (0.5 g/kg B.W.)</td>
<td>104.23± 5.62B</td>
<td>118.07±8.09 A</td>
<td>55.63± 2.42 A</td>
<td>49.27±2.16A</td>
<td>16.12±2.27A</td>
</tr>
<tr>
<td>Dexamethasone + Cyperus rotundus</td>
<td>112.27 ± 7.39B</td>
<td>125.89±5.63 B</td>
<td>65.49± 4.56 B</td>
<td>45.54±0.44A</td>
<td>21.01±0.14B</td>
</tr>
</tbody>
</table>

N=number of animals, A,B,C= differences between groups, P≤0.05 vs. control.

3- Effect of Dexamethasone and Cyperus rotundus on TSH, T_4 and T_3 of male rabbits.

In the Table [3] showed that effects of dexamethasone and Cyperus rotundus on TSH T4 and T3 are significant decreases (P≤0.05) in group treated with dexamethasone compared with control group and Cyperus rotundus group while group treated with dexamethasone + Cyperus rotundus showed no significant TSH,T4 and T3 compared with control group and Cyperus rotundus group.

Table3 :- Effect of Dexamethasone and Cyperus rotundus on TSH, T_4 and T_3 of male rabbits. (Mean±SD) n=6

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TSH (µIU/ml)</th>
<th>T_4 (µg/dl)</th>
<th>T_3 (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Normal salin)</td>
<td>0.68 ± 0.04 A</td>
<td>1.65 ± 0.06 AB</td>
<td>0.89 ± 0.02 A</td>
</tr>
<tr>
<td>Dexamethasone (0.35 mg/kg B.W.)</td>
<td>0.42 ± 0.02 C</td>
<td>0.95 ± 0.05 C</td>
<td>0.53 ± 0.01 C</td>
</tr>
<tr>
<td>Cyperus rotundus (0.5 g/kg B.W.)</td>
<td>0.71 ± 0.08 A</td>
<td>1.73 ± 0.07 A</td>
<td>0.90 ± 0.03 A</td>
</tr>
<tr>
<td>Dexamethasone + Cyperus rotundus</td>
<td>0.64 ± 0.05 B</td>
<td>1.45 ± 0.06 B</td>
<td>0.80 ± 0.07 B</td>
</tr>
</tbody>
</table>
N=number of animals, A,B,C= differences between groups, P≤0.05 vs. control.

4-Effect of Dexamethasone and *Cyperus rotundus* on Se, Zn and Cu of male rabbits.
In the Table [4] showed that effects of dexamethasone and *Cyperus rotundus* on Se, Zn and Cu are significant decreases (P≤0.05) in group treated with dexamethasone compared with control group and *Cyperus rotundus* group while group treated with dexamethasone + *Cyperus rotundus* showed no significant Se, Zn and Cu compared with control group and *Cyperus rotundus* group.

Table 4 :-Effect of Dexamethasone and *Cyperus rotundus* on Se, Zn and Cu of male rabbits. (Mean±SD)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Se (mg/ml)</th>
<th>Zn (µg/dl)</th>
<th>Cu (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Normal salin)</td>
<td>0.12±0.02A</td>
<td>123.79±18.17 A</td>
<td>1.06±0.28A</td>
</tr>
<tr>
<td>Dexamethasone (0.35 mg/kg B.W.)</td>
<td>0.42 ± 0.02 C</td>
<td>50.90±1.56 C</td>
<td>0.53 ± 0.01 C</td>
</tr>
<tr>
<td>Cyperus rotundus (0.5 g/kg B.W.)</td>
<td>0.71 ± 0.08 A</td>
<td>127.50±6.69 A</td>
<td>0.90 ± 0.03 A</td>
</tr>
<tr>
<td>Dexamethasone + Cyperus rotundus</td>
<td>0.64 ± 0.05 B</td>
<td>85.55±1.89 B</td>
<td>1.58± 0.04B</td>
</tr>
</tbody>
</table>

N=number of animals, A,B,C= differences between groups, P≤0.05 vs. control.

5-Effect of Dexamethasone and *Cyperus rotundus* on GSH, SOD, MDA and CAT of male rabbits.
In the Table [5] showed that effects of dexamethasone and *Cyperus rotundus* on MDA are significant increases (P≤0.05) in group treated with dexamethasone compared with control group and *Cyperus rotundus* group while GSH, SOD and CAT showed the significant decreases (P≤0.05) in group treated with dexamethasone. The group treated with dexamethasone+*Cyperus rotundus* showed no significant changes in GSH, SOD,MDA and CAT compared with control group and *Cyperus rotundus* group.
Table 5: Effect of Dexamethasone and *Cyperus rotundus* on GSH, SOD, MDA and CAT of male rabbits. (Mean±SD)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Treatments</th>
<th>GSH µmol/L</th>
<th>SOD U/ml</th>
<th>MDA µmol/L</th>
<th>CAT U/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (Normal saline)</td>
<td>6.22±0.51 B</td>
<td>7.15±0.12 B</td>
<td>0.54±0.05 B</td>
<td>7.13±0.24 A</td>
</tr>
<tr>
<td></td>
<td>Dexamethasone (0.35 mg/kg B.W.)</td>
<td>4.56±0.48 C</td>
<td>3.69±0.72 C</td>
<td>3.78±0.62 A</td>
<td>5.21±0.17 B</td>
</tr>
<tr>
<td></td>
<td>Cyperus rotundus (0.5 g/kg B.W.)</td>
<td>8.12±0.73 A</td>
<td>8.34±0.34 A</td>
<td>0.50±0.09 B</td>
<td>7.79±0.52 A</td>
</tr>
<tr>
<td></td>
<td>Dexamethasone + Cyperus rotundus</td>
<td>6.07±0.48 B</td>
<td>6.89±0.45 B</td>
<td>0.52±0.01 B</td>
<td>7.05±0.11 A</td>
</tr>
</tbody>
</table>

N=number of animals, A,B,C= differences between groups, P≤0.05 vs. control.

6- Dexamethasone and *Cyperus rotundus* on Urea, Uric acid and Creatinin of male rabbits.

In the Table [6] showed that effects of dexamethasone and *Cyperus rotundus* on urea, uric acid and creatinin are significant increases (P≤0.05) in group treated with dexamethasone compared with control group and *Cyperus rotundus* group while group treated with dexamethasone + *Cyperus rotundus* showed no significant urea, uric acid and creatinin compared with control group and *Cyperus rotundus* group.

Table 6: Effect of Dexamethasone and *Cyperus rotundus* on Urea, Uric acid and Creatinine of male rabbits. (Mean±SD)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Treatments</th>
<th>Urea (mg/dl)</th>
<th>Uric acid (mg/dl)</th>
<th>Creatinine (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (Normal saline)</td>
<td>25.34±2.90 B</td>
<td>1.35±0.10 C</td>
<td>3.61±0.89 C</td>
</tr>
<tr>
<td></td>
<td>Dexamethasone (0.35 mg/kg B.W.)</td>
<td>37.58±2.67 A</td>
<td>2.59±0.52 A</td>
<td>5.73±1.96 A</td>
</tr>
<tr>
<td></td>
<td>Cyperus rotundus (0.5 g/kg B.W.)</td>
<td>25.19±2.10 B</td>
<td>1.32±0.15 C</td>
<td>3.50±0.71 C</td>
</tr>
<tr>
<td></td>
<td>Dexamethasone + Cyperus rotundus</td>
<td>25.05±1.12 B</td>
<td>1.95±0.14 B</td>
<td>4.28±1.24 B</td>
</tr>
</tbody>
</table>
N=number of animals, A,B,C= differences between groups, P≤0.05 vs. control.

7-Histological Examination.

7-1 Pancreas:-
The pancreas of control rabbits appeared to be divided into two different types of glandular tissue, exocrine and endocrine, embedded between the exocrine units lie clusters of endocrine cells called pancreatic islets figure (3) normal of langerhan's islets while the pancreas of rabbit treated with DEX revealed histopathological changes. The changes included vacuolation and degeneration of langerhan's islets as shown in figure (4). But the pancreas of rabbits treated with Cyperus rotundus showed normal architecture of islets langerhan's figure (6). In addition to the pancreas of rabbits treated with DEX+ Cyperus rotundus showed amelioration of this section compared to pancreas treatment with DEX alone, clear langerhan's islets as shown in figure(7).

7-2 Thyroid gland:
The thyroid gland of control group male rabbit appeared normal of hepatocyte (observed of radiation cellular structure), clear the central hepatic vein and observed of hepatic sinusoids figure (17) while the liver of male rabbit treated with DEX exhibited damage of hepatocyte (absent of radiation cellular structure), clear congestion of the central hepatic vein, absent of hepatic sinusoids and very clear fatty infiltration figure (18). But the liver of rabbits treated with Cyperus rotundus showed normal architecture of hepatocyte (observed of radiation cellular structure), clear the central hepatic vein, observed of hepatic sinusoids. In addition to the liver of rabbits treated with DEX+ Cyperus rotundus showed amelioration of this section compared to liver treatment with DEX alone,figure (19).
Fig. 3: Section of pancreas of control male rabbits. Showing islet langerhans normal (ILH). E&H stain 400X.

Fig. 4: Section of pancreas of male rabbits treated with DEX. Showing vacuolation & degeneration (V&D) of islets of langerhan's (ILH), stain (H&E) 400X.

Fig. 5: Section of pancreas of male rabbits treated with *Cyperus rotundus* alone. Showing normal of islets of langerhan's (ILH), stain (H&E) 400X.

Fig. 6: Section of pancreas of treated male rabbits with DEX+ *Cyperus rotundus*. Showing normal islet langerhans (ILH). E&H stain 400X.

Fig. 7: Section thyroid gland control. Showing colloid-rich (C) uniform thyroid follicles are lined by a layer of cuboidal epithelial cells and parafollicular cells can be distinguished. H&E

Fig. 8: Section thyroid gland treatment DEX. Showing almost of follicles is microfollicles
Fig. 1: Gross lesion of liver and fibroid of gall bladder treated with DEX. Gall bladder

Fig. 3: Gross lesion of liver and gall bladder of male rabbits treated with DEX. Showing gall stone.

Fig. 4: Gross lesion of gall bladder of male rabbits treated with DEX. Showing gall stone.

Fig. 5: Gross appearance of liver and gall bladder of male rabbits treated with *Cyperus rotundus* alone. Showing colloid-rich (C) uniform thyroid follicles (tf) are lined by a layer of cuboidal epithelial cells and parafollicular cells can be distinguished. E&H stain. 100X.

Fig. 6: Section of thyroid gland of treated male rabbits with *Cyperus rotundus* alone. Showing colloid-rich (C) uniform thyroid follicles (tf) are lined by a layer of cuboidal epithelial cells and parafollicular cells can be distinguished. E&H stain. 400X.

Fig. 7: Gross appearance of liver and gall bladder of male rabbits treated with *Cyperus rotundus* alone. Showing colloid-rich (C) uniform thyroid follicles (tf) are lined by a layer of cuboidal epithelial cells and parafollicular cells can be distinguished. E&H stain. 100X.

Fig. 8: Gross appearance of liver and gall bladder of male rabbits treated with DEX + *Cyperus rotundus*. Showing colloid-rich (C) uniform thyroid follicles are lined by a layer of cuboidal epithelial cells and parafollicular cells can be distinguished. E&H stain. 400X.

Fig. 9: Section of thyroid gland of treated male rabbits with *Cyperus rotundus* alone. Showing colloid-rich (C) uniform thyroid follicles (tf) are lined by a layer of cuboidal epithelial cells and parafollicular cells can be distinguished. E&H stain. 100X.

Fig. 10: Section of thyroid gland of treated male rabbits with DEX + *Cyperus rotundus*. Showing colloid-rich (C) uniform thyroid follicles are lined by a layer of cuboidal epithelial cells and parafollicular cells can be distinguished. E&H stain. 400X.

Fig. 11: Gross of liver and gall bladder of male rabbits control.

Fig. 12: Gross appearance of liver and gall bladder of male rabbits treated with *Cyperus rotundus*. Showing normal liver and gall bladder.

Fig. 13: Gross lesion of liver and fibroid of gall bladder treated with DEX.

Fig. 14: Gross lesion of gall bladder of male rabbits treated with DEX. Showing gall stone.
Fig. 15: Gross lesion of gall bladder of male rabbits treated with DEX. Showing cholesterol crystal lead to gall stone.

Fig. 16: Gross lesion of gall bladder of male rabbits treated with DEX. Showing fibrosis of gallbladder.

Fig. 17: Liver of male rabbit control. Showing normal of hepatocyte (observed of radiation cellular structure), clear the central hepatic vein (CV), observed of hepatic sinusoids.

Fig. 18: Liver of male rabbit treated with DEX. Showing damage of hepatocyte (absent of radiation cellular structure), clear congestion of the central hepatic vein (CCV), absent of hepatic sinusoids. Very clear fatty infiltration.

Fig. 19: Liver of male rabbit treated with *Cyperus rotundus* alone. Showing normal of hepatocyte (hc) (observed of radiation cellular structure), clear the central hepatic vein (CV), observed of hepatic sinusoids (S).

Fig. 20: Liver of male rabbit treated with DEX + *Cyperus rotundus*. Showing normal of hepatocyte (observed of radiation cellular structure), clear the central hepatic vein, and observed of hepatic sinusoids.
Discussion
The decrease in the body weight gain may be attributed to the decrease in the thyroid hormones and zinc concentration in the serum of male rabbits treated with DEX. [11] stated that both thyroid hormones and zinc element play an important role in growth and the present study revealed development.

The hormones of the adrenal gland positively influence the glucose metabolism. In fact, when the adrenal gland remains hyperactive for a longer period, it always increases serum glucose level [12]. Interestingly, in the animals treated with both Cyperus rotundus and dexamethasone, nearly normal levels of fasting glucose was restored suggesting that the test extract may also ameliorate steroid induced type 2 diabetes mellitus. This appears to be a new observation. The dexamethasone-induced increase in the levels of both serum insulin and glucose indicating a state of insulin resistance as previously observed [13,14] was also reversed by Cyperus rotundus administration. This is in accordance with another report [15]. Because Cyperus rotundus in the present study could decrease the levels of both serum cholesterol and triglycerides in DEX-treated animals, as also observed in an earlier study [16], it should be expected that the decrease in insulin resistance might be the result of decreased level of lipid contents [17]. However, from the present findings, it also appears that the decreased concentrations of total cholesterol and triglycerides in the Cyperus rotundus-treated could also be a result of increased levels of thyroid hormones that are lipolytic in nature [18]. A marked increase in serum lipid peroxidation with a parallel decrease in antioxidants such as superoxide dismutase, catalase and GSH was observed after DEX treatment, similar to our earlier findings [19]. However, these alterations were reversed with simultaneous administration of Cyperus rotundus suggesting the beneficial role of the extract with respect to liver function. Preventive treatment of C. rotundus extract significantly reduced the DEX induced elevated level of cholesterol triglycerides and LDL cholesterol. The treatment of rabbits with C. rotundus extracts significantly (P<0.05) increased the HDL level in DEX induced decrease in HDL level. The extract was also active against hyperlipidemia; however, highest effect was observed which was near to normal. In another study administration of C. rotundus extract restored the age associated change in serum lipids (total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides and VLDL triglyceride level) to the level of young control rats. In young rats, treatment of C. rotundus significantly increased HDL cholesterol level [20,21,22]. Free fatty acids liberated from adipose tissues. As peroxidation of membrane increase, phospholipids liberate free fatty acid by the action of the enzyme phospholipase A2. Ca2+ ions are important inducers of phospholipase A2, so the resulted increase in free fatty acid amount could have been due to the indirect effect of calcium level, which was reported to be changed in DEX-treatment. Hence, the significant increase was observed in the level of lipids in serum of DEX treated group of rabbits [23]. Prior administration of plant extracts significantly decreased the DEX induced elevated level of cholesterol. Treatment of different groups of rabbits with extracts of C. rotundus significantly blocked the DEX induced secretion of all enzymes.
dose dependently. Extracts treatment has shown significant reduction in DEX-induced elevation in cholesterol, triglyceride and LDL and restored the HDL level. *C. rotundus* contained remarkable antioxidant compounds and showed antioxidant activity [24]. The decline in enzymes and lipids levels could be due to potential of extracts to repair and maintain the membrane due to antioxidant polyphenols. The DEX-induced increase in serum lipid peroxidation might be due to an increase in serum glucose concentration that might have provided an appropriate environment for oxidation of basement membrane lipids [25,26]. In fact, it has previously been suggested that glucose at higher concentrations exerts oxidative stress as indicated by increased serum lipid peroxidation, which is ameliorated by a reduction in its level [27-29]. It is also possible that the DEX-induced increase in lipid peroxidation could be a result of hyperlipidaemia because the dexamethasone induce gall stone [27]. This concept was further supported by the fact that high fat diet down-regulates the expression of the genes for the free radical scavenging enzymes [30]. From these possible reasons of DEX-induced alterations in lipid peroxidation system, we suggest that *Cyperus rotundus* might be exhibiting its protective role in the diabetic condition by reducing tissue lipid peroxidation and by enhancing superoxide dismutase, catalase and GSH. Observations on the changes in thyroid hormones revealed a hypothyroidic condition after dexamethasone administration as reported earlier [31,32], which was reversed after simultaneous administration with *Cyperus rotundus*. As decrease in serum lipid peroxidation and increase in superoxide dismutase and catalase activities coincided with this elevation in thyroid hormones, it is quite possible that the toxic manifestation of dexamethasone might have been mediated through the alterations in thyroid hormones, which seems more justified because thyroid hormones are known to reduce tissue lipidperoxidation and increase the levels of natural antioxidants [33].

Of the two major circulating thyroid hormones, T₄ is synthesized only in the thyroid gland and the major amount of T₃ (80-90%) is produced by the peripheral conversion of T₄ primarily in hepatic tissues [34]. Because the levels of both thyroid hormones were increased in the present study, it seems that *Cyperus rotundus* regulates thyroid function both at the glandular level (the only source of T₄). The obtained results revealed that a significant increase of uric acid, creatinine, urea concentrations in the serum of male rabbits treated with DEX. These results are attributed to deleterious effect of DEX on liver and kidney functions and these results is supported by histological findings of liver. Hypothyroidism leads to adverse effects in various tissues. The present cross-sectional study was performed to determine whether thyroid dysfunction has deleterious effects on renal function while when treatment with methanolic extract of *Cyperus rotundus* these parameters become near normal values.

The predominant liver abnormalities. The liver dysfunction usually presents with treatment of DEX, and can persist for several months despite discontinuation of the off ending drug. There is also evidence that hypothyroidism may directly affect the liver structure or function. Hypothyroidism is associated with
cholestatic jaundice attributed to elevation of bilirubin and reduction bile excretion. The results of gall bladder indicate these. Treatment with DEX lead to hyperglycemia, hypothyroidism and formation gall stone. In experimental hyperglycemia lead to hypothyroidism, the reduction in bile flow may be in part due to an increase in membrane cholesterol-phospholipid ratio and diminished membrane fluidity, which may affect a number of canalicular membrane transporters and enzymes, including the Na⁺, K⁺-ATPase. The hypercholesterolaemia and hypotonia of the gall bladder seen in treated with DEX increases the incidence of gallstones. When treated with *Cyperus rotundus* lead to improvement of glucose concentrations, lipid profile and bile flow.

Zinc (Zn) is an essential micronutrient which has an important role in the functioning of hundreds of enzymes [35], in insulin metabolism and acts as an efficient antioxidant [36,37]. Zn is considered important mainly because it plays a major role in the stabilization of insulin hexamers and the pancreatic storage of the hormone [38] and it is inefficient antioxidant[39], while oxidative stress is considered to be a main component in initiation and progression of insulin resistance and diabetes [40]. In dexamethasone treated group zinc concentration was significantly lower than the control group (p<0.05). This result agreement with [41], [42]. They reported that corticosteroids lowered zinc by 30% to 40%, which persisted as long as the hormone continued to be administered.[41] also reported a gradual fall in serum zinc in cattle receiving i/v dexamethasone (2 mg) for 3 days. These results, however, do not agree with the observations of who recorded that simulation of a stressing condition by a single injection of corticotropin did not affect serum zinc and even extending the duration of stress by giving four consecutive daily injections of corticotrophin did not statistically significantly change the serum zinc during 72 h injection period[11].

References

19-Nagulendran, K. R.; Mahesh, R. and Begum, V. H. Preventive role of *Cyperus rotundus* rhizomes extract on age associated changes in glucose and lipids, Pharmacologyonline,2007,2, 318-325

20-Mehta, R. S.; Shankar, M. B.; Geetha, M.; Saluja, A. K. Hepatoprotective effect of *Cyperus*
rotundus on paracetamol and rifampicin induced enzyme activity. Indian J Natur Prod. 2006; 1392-1657.

