3a\ quasi M-θ-ii-continuous functions in bi-Supra topological spaces

Taha H. Jasim Reem O. Rasheed Sardar G. Amen

University of Tikrit University of Tikrit Al Kitab University
College of Computer College of Computer College
Science and Mathematics, Science and Mathematics,

Takahameed91@gmail.com al_reem_ms@yahoo.com
sardargul8293@gmail.com

Abstract.

In this paper, we introduce a new definition in bi-supra topological space, called M-θ-ii-open and via this definition, we introduce a new types of functions called quasi M-θ-ii-continuous functions which unifies some weak forms of quasi θ-ii-continuous functions in bi-supra topological spaces and investigate their properties.

Key Words and Phrases bi-supra topological space , M-θ-ii-open set, M-θ-ii-closed set, quasi M-θ-ii-continuous.
في الفضاءات ثنائية التبولوجية -ii M- θ حول الدوال شبه الضعيفة من النوع-ii M- θ

أ.م.د. طه حويذ جاسم
م.م. ريم عمران شريف
الجباري
كلية علوم الحاسوب
كلية الكتاب
والرياضيات
sardargul8293@gmail.com
al_reem_ms@yahoo.com
Tahahameed91@gmail.com

المستخلص:
في هذا البحث قدمنا تعرفنا جديداً أسمينا
التبولوجي شبه الفوقية ومن خلال هذا التعرف قدمنا نوع من الدوال شبه الضعيفة
والتي من خلالها عملنا على توحيد بعض الأشكال للدوال
في الفضاءات التبولوجية شبه الفوقية وتحرينا بعض
خصائصها وطرق تكافؤها.

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com,
kirkukjoursci@gmail.com
1. Introduction

In 1987, Noiri and Popa introduced M-open set and M-closed set and investigated a new class of functions called quasi θ-continuous functions[8], Maghrabi and Juhani introduced M-continuous function, pre-M-open function and pre-M-closed function [3]. In this paper by using M-θ-ii-open sets in [12] denoted another sets is M-θ-i-open in bi-supra topological spaces every M-θ-ii-open (resp. M-θ-ii-closed) set is M-θ-i-open (resp. M-θ-i-open) sets but the converse is not true[10],

the quasi M-θ-ii-continuity is introduced and studied in bi-supra topological spaces

Let X be non-empty space, let $\mathcal{S}_o(X)$ be the set of all semi open subset of the space X, (for short $\mathcal{S}T$) and let $\mathcal{P}_o(X)$ be the set of all pre open subset of X (for short $\mathcal{P}T$). Then, we say that $(X,\mathcal{S}T,\mathcal{P}T)$ is a bi-supra topological space, [5] Moreover, basic properties of quasi M-θ-ii-continuous functions are investigated, also, relationships between quasi M-θ-ii-continuous functions and graphs are investigated.

2. Preliminaries.

Throughout this paper (X,\mathcal{T}_X) and (Y,\mathcal{T}_Y) (Simply, X and Y) represent topological spaces on which no separation axioms are assumed, unless otherwise mentioned. The closure, the interior and the complement a subset of A is denoted by $\text{cl}(A)$, $\text{int}(A)$ and $(A^c \text{ or } X\setminus A)$ respectively. A subset A of a space X is said to be regular open[7] if it is the interior of its closure, i.e., $(A = \text{int}(\text{cl}(A)))$. The complement of a regular-open set is referred to as a regular-closed set. A union of regular-open sets is called δ-open [7] The complement of a δ-open set is a δ-closed set. A subset A of a space (X,\mathcal{T}_X) is a θ-open set[9] if there exists an open set U containing x such that $U \subseteq \text{cl}(U) \subseteq A$. The set of all θ-interior points of A is said to be the θ-interior set and denoted by θ-int (A). A subset A of X is θ-open if $A = \theta$-int (A). The family of all θ-open sets of a space X is a topology on \mathcal{T}_X. The union of all θ-open (resp. δ-open) sets contained

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com
in A is called the \(0\)-interior (resp. \(\delta\)-interior) of A and it is denoted by \(\theta\)-int(A) (resp. \(\delta\)-int(A)). The intersection of all \(0\)-closed (resp. \(\delta\)-closed) sets containing A is called the \(0\)-closure (resp. \(\delta\)-closure [4]) of A and it is denoted by \(0\)-cl(A) (resp. \(\delta\)-cl(A)).

We recall the following definitions and results, which are useful in the sequel

Definition 2.1[8] Let \((X, \mathcal{T}_X)\) be a topological space. Then a subset A of X is said to be:

(i) an \(M\)-open set, if \(A \subseteq \text{cl}(\text{int}_\theta(A)) \cup \text{int}(\text{cl}_\delta(A))\),

(ii) an \(M\)-closed set if \(\text{int}(\text{cl}_\theta(A)) \cap \text{cl}(\text{int}_\delta(A)) \subseteq A\).

Definition 2.2[8] Let \((X, \mathcal{T}_X)\) be a topological space and \(A \subseteq X\). Then:

(i) the \(M\)-interior of A is the union of all \(M\)-open sets contained in A and is denoted by \(M\)-int(A),

(ii) the \(M\)-closure of A is the intersection of all \(M\)-closed sets containing A and is denoted by \(M\)-cl(A).

Definition 2.3[3] A function \(f: (X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y)\) is said to be:

(i) \(M\)-continuous [1] if \(f^{-1}(U)\) is \(M\)-open in X, for each U is \(\mathcal{T}_Y\)

(ii) pre-\(M\)-open [2] if, \(f(U)\) is \(M\)-open in Y, for each U is \(M\)-open in X.

(iii) pre-\(M\)-closed [2] if, \(f(U)\) is \(M\)-closed in Y, for each U is \(M\)-closed in X.

Definition 2.4[11] A function \(f: (X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{ST}_Y, \mathcal{PT}_Y)\) is called a quasi-\(\theta\)-continuous function if \(f^{-1}(V)\) is a \(\theta\)-open set in X for every \(\theta\)-open set V of Y.

3. A new type of bi-supra topological space

Definitions 3.1 Let \((X, \mathcal{ST}_X, \mathcal{PT}_X)\) be a bi-supra topological space, and let G be a subset of X. Then G is said to be an \(ii\)-open set if \(G=(A \cup B) \cup \emptyset\) where \(A \in \mathcal{ST}, B \in \mathcal{PT}\) such that \(A \notin \mathcal{PT}, A \cap B \neq \emptyset\). The Complement of \(ii\)-open set is called \(ii\)-closed set.
Definitions 3.2 A subset A of a space $(X, \mathcal{S}_x, \mathcal{T}_x)$ is called θ-ii-open set if there exists an ii-open set U containing x such that $U \subseteq ii$-cl$(U) \subseteq A$.

Definitions 3.3 The set of all θ-ii-interior points of A is said to be the θ-ii-interior set and denoted by θ-ii-int(A), so a subset A of X is θ-ii-open if and only if $A = \theta$-ii-int(A).

Definitions 3.4 A union of regular-ii-open sets is called δ-ii-open. The complement of a δ-ii-open set is a δ-ii-closed set.

Definitions 3.5 A subset A of a bi-supra topological space $(X, \mathcal{S}_x, \mathcal{T}_x)$ is called an M-ii-open set if $A \subseteq ii$-cl$(\theta$-ii-int$(A))$ \cup ii-int$(\delta$-ii-cl$(A))$. The union of all M-ii-open (resp. δ-ii-open) sets contained in A is called the M-ii-interior (resp. δ-ii-interior) of A and it is denoted by M-ii-int(A) (resp. δ-ii-int(A)). The intersection of all M-ii-closed (resp. δ-ii-closed) sets containing A is called the M-ii-closure (resp. δ-ii-closure) of A and it is denoted by M-ii-cl(A) (resp. δ-ii-cl(A)).

Definition 3.6 A subset A of a space $(X, \mathcal{S}_x, \mathcal{T}_x)$ is an M-θ-ii-open set if and only if for each $x \in A$ there exists an M-ii-open set in X such that M-ii-cl$(G) \subseteq A$.

Remark 3.7 Every M-θ-ii-open (resp. M-θ-ii-closed) set is an M-ii-open (resp. M-ii-closed) set, and every θ-ii-open (resp. θ-ii-closed) set is M-ii-open (resp. M-ii-closed) but the converse is not true as in that example.

The implication between some types of sets are given by the following diagram

\[
\text{M-θ-ii-open} \Rightarrow \text{M-ii-open} \Rightarrow \text{0-ii-open}
\]

Example 3.8 Let $X = \{a, b, c\}$ and $\mathcal{T}_x = \{ \emptyset, \{a\}, \{b\}, \{a,b\}, X\}$. Then

- $\emptyset, \{b, c\}, \{a,c\}, \{c\}, X$, $\mathcal{S}_x = \emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}, X = \mathcal{T}_x^c$
- $\mathcal{P}_x = \emptyset, \{a\}, \{b\}, \{a, b\}, X$

ii-open in $X = \emptyset, \{a, c\}, \{b, c\}, X$, ii-closed in $X = \emptyset, \{b\}, \{a\}, X$

Web Site: www.kujss.com Email: kirkukjournsci@yahoo.com
kirkukjournsci@gmail.com
\[= \{ \emptyset, X \}, \text{ in } X \text{ 0-ii- open}\]

\[= \{ \emptyset, X \}, \text{ in } X \text{ 0-ii-closed}\]

Regular –ii-open in \(X= \{ \emptyset, X \},\)

\[\delta-\text{ii-open in } X = \{ \emptyset, X \},\]

\[\delta-\text{ii-closed in } X = \{ \emptyset, X \},\]

\[\text{M-ii-open in } X = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X \},\]

\[\text{M-ii-closed in } X = \{ \emptyset, \{b, c\}, \{a, b\}, \{b, c\}, \{a\}, X \},\]

\[\text{M-0-ii-open in } X = \{ \emptyset, \{a, b\}, \{a, c\}, \{b, c\}, X \}, \text{ so the sets } \{a\}, \{b\}, \{c\} \text{ are M-ii-open sets but not M-0-ii-open sets in } X \text{ and not 0-ii-open in } X .\]

Definition 3.9 A subset \(A\) in a bi-supra topological space \((X, ST_X, PT_X)\) is called M-0-ii-closure and denoted by \(M-0-\text{ii-cl}(A)\) and is defined to be the set of all points \(x\) of \(X\) such that for each an M-0-ii-open set in \(X\), \(M-0-\text{ii-cl}(G) \cap A \neq \emptyset.\)

Definition 3.10 A subset \(A\) in bi-supra topological space \((X, ST_X, PT_X)\) is said to be M-0-ii-closed if \(M-0-\text{ii-cl}(A) = A\). The complement of a M-0-ii-closed set is an M-0-ii-open set.

Lemma 3.11 For a subset \(A\) of a topological space \((X, T_X)\) (resp.bi-supra topological space \((X, ST_X, PT_X)\) the following statements are hold:

(i) If \(A \subseteq F_i, F_i \text{ is an M-closed }[2]\) (resp. M-ii-closed)set in \(X\), then \(A \subseteq M-\text{cl}(A) \subseteq F_i, (\text{resp. } M-\text{ii-cl}(A) \subseteq F_i).\)

(ii) If \(G_i \subseteq A, G_i \text{ is an M-open}[3] \text{ (resp. M-ii-open) set in } X\), then \(G_i \subseteq M-\text{int}(A) \subseteq A \text{ (resp. } G_i \subseteq M-\text{ii-int}(A) \subseteq A).\)

(iii) \(A\) is M-ii-closed in \(U\) if \(M-\text{ii-d}(A) \subseteq A\)
(iv) $M\text{-}\text{ii-cl}(A) = A \cup M\text{-}\text{ii-d}(A)$.

The set of θ-boundary (resp. $\theta\text{-}\text{ii}$-boundary, $M\text{-}\text{ii}$-boundary, $M\text{-}\text{ii}$-border) of A is denoted by $\theta\text{-}F_r (A)$ (resp. $\theta\text{-}\text{ii}\text{-}F_r (A), M\text{-}\text{ii}\text{-}F_r (A), M\text{-}\text{ii}\text{-}b(A)$).

Proposition 3.12 Let A be a subset of (X,\mathcal{T}_X) a topological space (resp. $(X,\mathcal{S}\mathcal{T}_X,\mathcal{P}\mathcal{T}_X)$ a bi-supra topological space). Then, the following statements are hold:

(i) $\theta\text{-}F_r(A) = \theta\text{-}\text{cl}(A) \setminus \theta\text{-}\text{int}(A)$ (resp. $\theta\text{-}\text{ii}\text{-}F_r(A) = \theta\text{-}\text{ii}\text{-}\text{cl}(A) \setminus (\theta\text{-}\text{ii}\text{-}\text{int}(A)$)

(ii) $M\text{-}F_r(A) = M\text{-}\text{cl}(A) \setminus M\text{-}\text{int}(A)$ [4] (resp. $M\text{-}\text{ii}\text{-}F_r(A) = M\text{-}\text{ii}\text{-}\text{cl}(A) \setminus (M\text{-}\text{ii}\text{-}\text{int}(A)$)

(iii) $M\text{-}b(A) = A \setminus M\text{-}\text{int}(A)$ [2] (resp. $M\text{-}\text{ii}\text{-}b(A) = A \setminus M\text{-}\text{ii}\text{-}\text{int}(A)$).

We recall the following definitions and results, which are useful in the sequel:

Definition 3.13 A function $f: (X,\mathcal{S}\mathcal{T}_X,\mathcal{P}\mathcal{T}_X) \rightarrow (Y,\mathcal{S}\mathcal{T}_Y,\mathcal{P}\mathcal{T}_Y)$ is called $M\text{-}\text{ii}$-continuous if $f^{-1}(V)$ is $M\text{-}\text{ii}$-open in X for every ii-open set V in Y.

Example 3.14 Let $X = \{a, b, c\}$ and $\mathcal{T}_X = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then

$\{\emptyset, \{b, c\}, \{a, c\}, \{c\}, X\} \in \mathcal{S}\mathcal{T}_X = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\} = \mathcal{T}_X^c$

$\mathcal{P}\mathcal{T}_X = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$

ii-open in $X = \{\emptyset, \{a, c\}, \{b, c\}, X\}$, ii-closed in $X = \{\emptyset, \{b\}, \{a\}, X\}$

$M\text{-}\text{ii}$-open in $X= \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$

$M\text{-}\text{ii}$-closed in $X = \{\emptyset, \{b, c\}, \{a, c\}, \{a, b\}, \{c\}, \{b\}, \{a\}, X\}$

New, let $Y=\{a, b, c\}$ and , $\mathcal{T}_X = \{\emptyset, \{a\}, \{c\}, \{a, c\}, Y\}$, $\mathcal{T}_Y = \{Y, \{b, c\}, \{a, b\}, b, \emptyset\}$. Then
\(ST_y = \{ \emptyset, \{ a \}, \{ c \}, \{ a, c \}, \{ a, b \}, \{ b, c \}, \{ Y \} \), \(PT_y = \{ \emptyset, \{ a \}, \{ c \}, \{ a, c \}, Y \} \)

\(ii \)-open in \(Y = \{ \emptyset, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ b, c \}, \{ Y \} \), \(ii \)-closed in \(Y = \{ \emptyset, \{ c \}, \{ a \}, \{ Y \} \} \).

If \(f: (X, ST_x, PT_x) \rightarrow (Y, ST_y, PT_y) \) is defined by \(f(a)=b, f(b)=a, \) and \(f(c)=c \) then \(f \) is \(M-ii \)-continuous.

Theorem 3.15 Let \((X, ST_x, PT_x) \) and \((Y, ST_y, PT_y) \) be two bi-supra topological spaces and \(f:(X, ST_x, PT_x) \rightarrow (Y, ST_y, PT_y) \) be a function. Then the following statements are equivalent:

(i) \(f \) is \(M-ii \)-continuous

(ii) \(M-ii-\text{cl}(f^{-1}(B)) \subseteq f^{-1}(ii-\text{cl}(B)) \) for each \(B \subseteq Y \)

(iii) \(f(M-ii-\text{cl}(A)) \subseteq ii-\text{cl}(f(A)) \) for each \(A \subseteq X \)

(iv) \(f^{-1}(ii-\text{int}(B)) \subseteq M-ii-\text{int}(f^{-1}(ii-b(B))) \) for each \(B = Y \)

Proof: (i) \(\rightarrow \) (ii) Since \(B \subseteq ii-\text{cl}(B) \subseteq Y \) which and is an \(ii \)-closed set, then by hypothesis, \(f^{-1}(ii-\text{cl}(B)) \) is \(M-ii \)-closed in \(X \). Hence, by Lemma 3.11, \(M-ii-\text{cl}(f^{-1}(B)) \subseteq f^{-1}(ii-\text{cl}(B)) \) for each \(B \subseteq Y \).

(ii) \(\rightarrow \) (iii) Let \(A \subseteq X \). Then \(f(A) \subseteq Y \), hence by hypothesis, \(M-ii-\text{cl}(A) \subseteq M-ii-\text{cl}(f^{-1}(f(A))) \subseteq f^{-1}(ii-\text{cl}(f(A))). \) Therefore, \(f(M-ii-\text{cl}(A)) \subseteq f(f^{-1}(ii-\text{cl}(A))) \subseteq ii-\text{cl}(f(A)) \).

(iii) \(\rightarrow \) (i) Let \(V \subseteq Y \) be an \(ii \)-closed set. Then, \(f^{-1}(V) \subseteq X \). Hence, by (iii), \(f(M-ii-\text{cl}(f^{-1}(V))) \subseteq ii-\text{cl}(f(f^{-1}(V))) \subseteq ii-\text{cl}(V) = V \). Thus \(M-ii-\text{cl}(f^{-1}(V)) \subseteq f^{-1}(V) \) and hence \(f^{-1}(V) \) is \(M-ii \)-closed in \(X \). Hence, \(f \) is \(M-ii \)-continuous.

(iv) \(\rightarrow \) (i) Let \(U = Y \) be an \(ii \)-open set. Then by assumption, \(f^{-1}(U) = f^{-1}(ii-\text{int}(U)) \subseteq M-ii-\text{int}(f^{-1}(U)) \). Hence, \(f^{-1}(U) \) is \(M-ii \)-open in \(X \). Therefore, \(f \) is \(M-ii \)-continuous.
Corollary 3.16 Let \((X,\mathcal{ST}_x,\mathcal{PT}_x)\) and \((Y,\mathcal{ST}_y,\mathcal{PT}_y)\) be two bi-supra topological spaces and \(f:(X,\mathcal{ST}_x,\mathcal{PT}_x)\rightarrow(Y,\mathcal{ST}_y,\mathcal{PT}_y)\) be a function

(i) If \(f\) is M-\(ii\)-continuous, then \(M-\text{ii-b}(f^{-1}(B)) \subseteq f^{-1}(\text{ii-b}(B))\) for each \(B \subseteq Y\)

(ii) If \(f\) is M-\(ii\)-continuous, then \(M-\text{ii-Fr}(f^{-1}(B)) \subseteq f^{-1}(\text{ii-Fr}(B))\) for each \(B \subseteq Y\)

Theorem 3.16 Let \((X,\mathcal{ST}_x,\mathcal{PT}_x)\) and \((Y,\mathcal{ST}_y,\mathcal{PT}_y)\) be two bi-supra topological spaces and \(f:(X,\mathcal{ST}_x,\mathcal{PT}_x)\rightarrow(Y,\mathcal{ST}_y,\mathcal{PT}_y)\) be a function. Then the following statement are equivalent:

(i) \(f\) is M-\(ii\)-continuous

(ii) \(f(M-\text{ii-d}(A)) \subseteq \text{ii-cl}(f(A))\) for each \(A \subseteq X\), where \(M-\text{ii-d}(A)\) is (The set of all M-\(ii\)-limit points of \(A\) is called M-\(ii\)-derived set of \(A\) and denoted by \(M-\text{ii-d}(A)\)).

Proof: (i) \(\rightarrow\) (ii) since \(f\) is M-\(ii\)-continuous then by theorem (3.15(iii)) \(f(M-\text{ii-cl}(A)) \subseteq \text{ii-cl}(f(A))\) for each \(A \subseteq X\), so \(f(M-\text{ii-d}(A)) \subseteq f(M-\text{ii-cl}(A)) \subseteq \text{ii-cl}(f(A))\).

(ii) \(\rightarrow\) (i) Let \(U\) be an \(ii\)-closed subset of \(Y\). Then \(f^{-1}(U) \subseteq X\) hence by hypothesis \(f(M-\text{ii-cl}(f^{-1}(U))) \subseteq \text{ii-cl}(f(f^{-1}(U))) \subseteq \text{ii-cl}(U) = U\). Therefore by lemma (3.11(iii),(iv))

Thus \(M-\text{ii-cl}(f^{-1}(U)) = f^{-1}(U) \cup M-\text{ii-d}(f^{-1}(U)) \subseteq f^{-1}(U) \cup f^{-1}(U) = f^{-1}(U)\).

Hence \(f^{-1}(U) = M-\text{ii-cl}(f^{-1}(U))\) which is M-\(ii\)-closed set in \(X\) therefore \(f\) is M-\(ii\)-continuous.

Definition 3.17 A function \(f:\): \((X,\mathcal{ST}_x,\mathcal{PT}_x)\rightarrow(Y,\mathcal{ST}_y,\mathcal{PT}_y)\) is called an M-\(\theta\)-\(ii\)-continuous function, if for each \(x\) in \(X\) and each \(ii\)-open set \(V\) in \(Y\) containing \(f(x)\), there exists an M-\(\theta\)-\(ii\)-open set \(U\) in \(X\) containing \(x\) such that \(f(U) \subseteq V\).

Remark 3.18 Every M-\(\theta\)-\(ii\)-continuous function is M-\(ii\)-continuous but the converse is not true.

Proof: Directly from that definitions.
Let \(X = \{ a, b, c \} \)

\[\mathcal{T}_x = \{ \emptyset, \{a\}, \{b\}, \{a,b\}, X \} . \]

Then

\[\{ \emptyset, \{b, c\}, \{a,c\}, \{c\}, X \} , \quad \mathcal{S}\mathcal{T}_x = \{ \emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}, X \} = \mathcal{T}_x^c \]

\[\mathcal{P}\mathcal{T}_x = \{ \emptyset, \{a\}, \{b\}, \{a,b\}, X \} \]

\(\text{M-}\theta\text{-ii-open in } X = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a,c\}, \{b, c\}, X \} \)

\(\text{M-}\theta\text{-ii-closed in } X = \{ \emptyset, \{b, c\}, \{a,c\}, \{c\}, \{a\}, X \} \)

And let \(Y = \{ a, b, c \} \)

\[\mathcal{T}_y = \{ \emptyset, \{a\}, \{b\}, \{a,b\}, Y \} , \quad \mathcal{T}_y^c = \{ Y, \{b,c\}, \{a,c\}, \{c\}, \emptyset \} \]

\[\mathcal{S}\mathcal{T}_y = \{ \emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}, Y \} , \quad \mathcal{P}\mathcal{T}_y = \{ \emptyset, \{a\}, \{b\}, \{a,b\}, Y \} \]

\(\text{ii-open in } Y = \{ \emptyset, \{a,c\}, \{b,c\}, Y \} \)

\(\text{ii-closed in } Y = \{ \emptyset, \{a,c\}, Y \} \)

If \(f : (X,\mathcal{S}\mathcal{T}_x,\mathcal{P}\mathcal{T}_x) \rightarrow (Y,\mathcal{S}\mathcal{T}_y,\mathcal{P}\mathcal{T}_y) \) is defined by \(f(a)=a \) , \(f(b)=c \) , and \(f(c)=b \).

Then \(f \) is \(M-\theta\text{-ii-continuous} \).

4. qusai M-\(\theta\text{-ii-continuous} \) functions.

In this section, we introduces the concept of "qusai M-\(\theta\text{-ii-continuous} \) functions" and some examples with many properties of this concept.

Definition 4.1 A function \(f: (X,\mathcal{S}\mathcal{T}_x,\mathcal{P}\mathcal{T}_x) \rightarrow (Y,\mathcal{S}\mathcal{T}_y,\mathcal{P}\mathcal{T}_y) \) is called quasi-\(\theta\text{-ii-continuous} \) function if \(f^{-1}(V) \) is \(\theta\text{-ii-open} \) set in \(X \) for every \(\theta\text{-ii-open} \) set \(V \) of \(Y \).

Definition 4.2 A function \(f: (X,\mathcal{S}\mathcal{T}_x,\mathcal{P}\mathcal{T}_x) \rightarrow (Y,\mathcal{S}\mathcal{T}_y,\mathcal{P}\mathcal{T}_y) \) is called a quasi-M-\(\theta\text{-ii-continuous} \) function, if \(f^{-1}(V) \) is an M-\(\theta\text{-ii-open} \) set in \(X \) for every \(\theta\text{-ii-open} \) set \(V \) of \(Y \).
Example 4.3 See example (3.13) is holding definition

Proposition 4.4 Every quasi-\(\theta - \text{ii} \)-continuous function is an \(\theta - \text{ii} \)-continuous function.

Theorem 4.5 For a function \((X, \mathcal{ST}_{X}, \mathcal{PT}_{X}) \rightarrow (Y, \mathcal{ST}_{Y}, \mathcal{PT}_{Y}) \), the following statements are equivalent:

(i) \(f \) is quasi \(\theta - \text{ii} \)-continuous,

(ii) For each \(x \in X \) and each \(\theta - \text{ii} \)-open \(V \) in \(Y \) contains \(f(x) \), there exists an \(\theta - \text{ii} \)-open set \(U \) in \(X \) contains \(x \) such that \(f(U) \subseteq V \),

(iii) \(f^{-1}(F) \) is \(\theta - \text{ii} \)-closed in \(X \), for every \(\theta - \text{ii} \)-closed \(F \) of \(Y \),

(iv) \(\theta - \text{ii-cl}(f^{-1}(B)) \subseteq f^{-1}(\theta - \text{ii-cl}(B)) \), for each \(B \subseteq Y \),

(v) \(f(\theta - \text{ii-cl}(A)) \subseteq \theta - \text{ii-cl}(f(A)) \), for each \(A \subseteq X \),

(vi) \(f^{-1}(\theta - \text{ii-int}(B)) \subseteq \theta - \text{ii-int}(f^{-1}(B)) \), for each \(B \subseteq Y \),

(vii) \(\theta - \text{ii-Fr}(f^{-1}(B)) \subseteq f^{-1}(\theta - \text{ii-Fr}(B)) \), for each \(B \subseteq Y \),

(viii) \(\theta - \text{ii-b}(f^{-1}(B)) \subseteq f^{-1}(\theta - \text{ii-b}(B)) \), for each \(B \subseteq Y \).

Proof. (i)→(ii). Let \(x \in X \) and \(V \subseteq Y \) be a \(\theta - \text{ii} \)-open set containing \(f(x) \). Then \(x \in f^{-1}(V) \). Hence by hypothesis, \(f^{-1}(V) \) is \(\theta - \text{ii} \)-open set of \(X \) containing \(x \). We put \(U = f^{-1}(V) \), then \(x \in U \) and \(f(U) \subseteq V \).

(ii)→(iii). Let \(F \subseteq Y \) be \(\theta - \text{ii} \)-closed. Then \(Y \setminus F \) is \(\theta - \text{ii} \)-open if \(x \in f^{-1}(Y \setminus F) \), then \(f(x) \) \(\in Y \setminus F \). Hence by hypothesis, there exists an \(\theta - \text{ii} \)-open set \(U \) containing \(x \) such that \(f(U) \subseteq Y \setminus F \), this implies that, \(x \in U \subseteq f^{-1}(Y \setminus F) \). Therefore, \(f^{-1}(Y \setminus F) = \cup x \in U \{ U : f^{-1}(Y \setminus F) \} \) which is \(\theta - \text{ii} \)-open in \(X \). Therefore, \(f^{-1}(F) \) is \(\theta - \text{ii} \)-closed.

(iii)→(i). Let \(V \subseteq Y \) be a \(\theta - \text{ii} \)-open set. Then \(Y \setminus V \) is \(\theta - \text{ii} \)-closed in \(Y \). By hypothesis, \(f^{-1}(Y \setminus V) = X \setminus f^{-1}(V) \) is \(\theta - \text{ii} \)-closed and hence \(f^{-1}(V) \) is \(\theta - \text{ii} \)-open. Therefore, \(f \) is quasi \(\theta - \text{ii} \)-continuous.
(i)→ (iv). If \(B \subseteq X \) then \(\theta\text{-ii-cl}(B) \) is \(\theta\text{-ii}-\)closed, then by hypothesis, \(f^{-1}(\theta\text{-ii-cl}(B)) \) is \(M\text{-} \theta\text{-ii}-\)closed in \(X \). Hence, by Lemma 3.11, \(M\text{-} \theta\text{-ii-cl}(f^{-1}(B)) \subseteq f^{-1}(\theta\text{-ii-cl}(B)) \) for each \(B \subseteq Y \).

(iv)→(v). Let \(A \subseteq X \). Then \(f(A) \subseteq Y \), hence by hypothesis, \(M\text{-} \theta\text{-ii-cl}(A) \subseteq M\text{-} \theta\text{-ii-cl}(f^{-1}(f(A))) \subseteq f^{-1}(\theta\text{-ii-cl}(f(A))) \). Therefore, \(f(M\text{-} \theta\text{-ii-cl}(A)) \subseteq f\; f^{-1}(\theta\text{-ii-cl}(f(A))) \subseteq \theta\text{-ii-cl}(f(A)) \).

(v)→(i). Let \(V \subseteq Y \) be a \(\theta\text{-ii}\text{-closed set}. Then, \(f^{-1}(V) \subseteq X \). Hence, by hypothesis, \(f(M\text{-} \theta\text{-ii-cl}(f^{-1}(V))) \subseteq \theta\text{-ii-cl}(f(f^{-1}(V))) \subseteq \theta\text{-ii-cl}(V) \). Thus \(M\text{-} \theta\text{-ii-cl}(f^{-1}(V)) \subseteq f^{-1}(V) \) and hence \(f^{-1}(V) \in M\text{-} \theta\text{-ii-\)closed in \(X \). Hence, \(f \) is quasi \(M\text{-} \theta\text{-ii-\)continuous,

(i)→(vi). \(\forall B \subseteq X \) then \(\theta\text{-ii-int}(B) \) is \(\theta\text{-ii-\)open, then by hypothesis, \(f^{-1}(\theta\text{-ii-int}(B)) \) is an \(M\text{-} \theta\text{-ii-\)open set in \(X \). Hence, by Lemma 3.11, \(f^{-1}(\theta\text{-ii-int}(B)) \subseteq M\text{-} \theta\text{-ii-int}(f^{-1}(B)) \), for each \(B \subseteq Y \).

(vi)→(i). Let \(V \subseteq Y \) be a \(\theta\text{-ii-\)open set. Then by assumption, \(f^{-1}(V) = f^{-1}(\theta\text{-ii-int}(V)) \subseteq M\text{-} \theta\text{-ii-int}(f^{-1}(V)) \). Hence, \(f^{-1}(V) \) is \(M\text{-} \theta\text{-ii-\)open in \(X \). Therefore, \(f \) is quasi \(M\text{-} \theta\text{-ii-\)continuous.

(vi)→(vii). Let \(V \subseteq Y \). Then by hypothesis, \(f^{-1}(\theta\text{-ii-int}(V)) \subseteq M\text{-} \theta\text{-ii-int}(f^{-1}(V)) \) and so \(f^{-1}(V) \setminus M\text{-} \theta\text{-ii-int}(f^{-1}(V)) \subseteq f^{-1}(V) \setminus f^{-1}(\theta\text{-ii-int}(V)) = f^{-1}(V \setminus \theta\text{-ii-int}(V)) \). By Proposition 3.12, \(M\text{-} \theta\text{-ii-Fr}(f^{-1}(V)) \subseteq f^{-1}(\theta\text{-ii-Fr}(V)) \).

Proposition 4.6 If \(f : (X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{ST}_Y, \mathcal{PT}_Y) \) is quasi-M- \(\theta\text{-ii-\)continuous and \(g : (Y, \mathcal{ST}_Y, \mathcal{PT}_Y) \rightarrow (Z, \mathcal{ST}_Z, \mathcal{PT}_Z) \) is quasi- \(\theta\text{-ii-\)continuous then \(g \circ f \) is quasi-M- \(\theta\text{-ii-\)continuous .

Proof: let \(V \subseteq Z \) be a \(\theta\text{-ii-\)open set and \(g \) be a quasi- \(\theta\text{-ii-\)continuous function . Then \(g^{-1}(V) \) is \(0\text{-ii-\)open in \(Y \) . But \(f \) is a quasi-M- \(\theta\text{-ii-\)continuous function , then \((g \circ f)^{-1}(V) \) is an \(M\text{-} \theta\text{-ii-\)open set in \(X \), Hence \(g \circ f \) is an \(M\text{-} \theta\text{-ii-\)continuous function

Web Site: www.kujss.com Email: kirkukjoursci@yahoo.com, kirkukjoursci@gmail.com
References

