Study of the Influence of Incorporation of Gold Nanoparticles on the Modified Porous Silicon Sensor for Petroleum Gas Detection


In this work, the influence of alloying the porous surface with uniform distributed gold nanoparticles on the characteristic porous silicon gas sensors for petroleum gas detection has been fabricated and studied extensively. Well-controlled gold nanoparticles were prepared by employing the simple dipping process of the macro porous silicon surface in diluted concentrations of HAuCl4 salt aqueous solution. The sensing properties of the prepared porous silicon-based sensors, sensitivity response and recovery times at room temperature operating in CO gas were studied. The sensitivity of alloyed porous silicon increased from 38% to about 82% incorporation of gold nanoparticles. The lowest gas pressure detection process of CO molecules was improved from 1 mbar to 0.5 mbar. The surface alloying with rounded gold nanoparticles improved the integrated specific surface area of the alloyed porous silicon/gold nanoparticles structure, so efficient gas developed with the low-cost process.