Nonlinear Response of Uniformly Loaded Paddle Cantilever Based upon Intelligent Techniques


Modeling and simulation are indispensable when dealing with complex engineering systems. It makes it possible to do essential assessment before systems are built, Cantilever, which help alleviate the need for expensive experiments and it can provide support in all stages of a project from conceptual design, through commissioning and operation. This study deals with intelligent techniques modeling method for nonlinear response of uniformly loaded paddle. Two Intelligent techniques had been used (Redial Base Function Neural Network and Support Vector Machine). Firstly, the stress distributions and the vertical displacements of the designed cantilevers were simulated using (ANSYS v12.1) a nonlinear finite element program, incremental stages of the nonlinear finite element analysis were generated by using 25 schemes of built paddle Cantilevers with different thickness and uniform distributed loads. The Paddle Cantilever model has 2 NN; NN1 has 5 input nodes representing the uniform distributed load and paddle size, length, width and thickness, 8 nodes at hidden layer and one output node representing the maximum deflection response and NN2 has inputs nodes representing maximum deflection and paddle size, length, width and thickness and one output representing sensitivity (∆R/R). The result shows that of the nonlinear response based upon SVM modeling better than RBFNN on basis of time, accuracy and robustness, particularly when both has same input and output data.