Pseudo-Extending Modules And Related Concepts

Hibat K. Mohammadali Hairan Ibrahim Saeed
Tikrit University-Education College

Received: 3/4/2010 Accepted: 14/11/2010

Abstract: In this work, we introduce the concept of pseudo-extending modules as a generalization of extending modules. Many characterization, and properties of pseudo-extending module are obtained. Characterizations of pseudo-extending module in some classes of modules are given. Modules imply pseudo-extending module are studied.

Key words : pseudo-extending , R-module , pseudo-stable

Introduction
Throughout this paper R will denote an associative ring with identity and all R-modules are unitary (left) R-module. An R-module M is called extending if every submodule of M [5], where we said that a nonzero submodule K of M is essential in M if

\[K \cap L \neq \{0\} \]

for every non zero submodule L of M [4]. Extending modules have been studied recently by several author among them, Dung, N.V., Smith, P.F..and Wisbauer [3], Mohamed, S.H. and Muller, B.J. [9].

§1: Pseudo-Extending Modules
In this section we introduce and study a class of modules which is a generalization of extending modules.

Definition 1.1
An R-module M is called a pseudo-extending, if every pseudo-stable submodule of M is essential in a direct summand of M.

A ring R is a pseudo-extending, if R is a pseudo-extending R-module.

Remarks and examples 1.2
1) Every extending R-module is a pseudo-extending.
2) Every quasi-injective R-module is pseudo-extending.
3) Every uniform R-module is pseudo-extending.
4) \(\mathbb{Z}_n \) as a \(\mathbb{Z} \)-module for any \(n > 1 \) is pseudo-extending.
5) Every semi-simple R-module is pseudo-extending.

The following theorem gives a characterization of pseudo-extending modules.

Theorem 1.3
An R-module M is pseudo-extending if and only if for each pseudo-stable submodule A of M, there is a decomposition \(M = M_1 \bigoplus M_2 \) such that \(A \subseteq M_1 \) and \(A \bigoplus M_2 \) is essential submodule of M.

Proof
\((\Rightarrow) \) Let A be a pseudo-stable submodule of M, then A is essential in a direct summand of M say K. That is \(M = K \bigoplus H \) for some submodule H of M. Since A is essential in K and H is essential in H, then A \(+K \) is essential in M.

\((\Leftarrow) \) Let A be a pseudo-stable submodule of M, then by hypothesis, there is a decomposition \(M = M_1 \bigoplus M_2 \) such that \(A \subseteq M_1 \) and \(A \bigoplus M_2 \) is essential submodule of M. We claim that A is an essential submodule of \(M_1 \), thus \(K_1 \) is a non-zero submodule of \(M_1 \), thus \(K_1 \) is a submodule of...
M. Since \(A + M_2\) is essential in \(M\), then \((A + M_2) \cap M_1 \neq (0)\). Let \(x = a + m\) be a non-zero element of \(K_1\), a in \(A\) and \(m\) in \(M\), thus \(m = x - a\) which implies that \(m \in M_1 \cap M_2 = (0)\) so we have \(y = a \in K_1 \cap A \neq (0)\), and hence \(A\) is essential in \(M_1\). Therefore \(M\) is pseudo-extending module.

Recall that a submodule \(N\) of an \(R\)-module \(M\) lies under a direct summand of \(M\), if there exists a direct decomposition \(M = M_1 \oplus M_2\) with \(N \subseteq M_2\) and \(N\) is essential in \(M\).[10]

Corollary 1.4

Let \(M\) be an \(R\)-module. Then \(M\) is a pseudo extending if and only if every pseudo-stable submodule of \(M\) lies under a direct summand of \(M\).

Proof:

\((\Leftarrow)\) Let \(N\) be a pseudo-stable submodule of \(M\), and \(M = M_1 \oplus (0)\) be a direct decomposition of \(M\). Then by theorem 1.3 we have \(N \subseteq M\) and \(N \cap (0)\) is essential in \(M\). Hence \(N\) is lies under a direct summand of \(M\).

\((\Rightarrow)\) Trivial.

The following theorem is another characterization of pseudo-extending modules.

Theorem 1.5

In this section, we give many characterizations of pseudo-extending modules in some classes of modules.

Before that we give the first characterization, we must introduce the following lemma.

Lemma 2.1

If \(N\) is a pseudo-stable submodule of \(M\), then \(cl(N)\) is a pseudo-stable submodule of \(M\).

Proof:

Let \(f: cl(N) \to M\) be an \(R\)-monomorphism, and \(m \in cl(N)\). then \(f(m) \subseteq N\) for some essential ideal \(J\) of \(R\). Now, consider \(f(m) \subseteq f(N) \subseteq N\). Thus \(f(m) \subseteq cl(N)\). Hence \(f(cl(N)) \subseteq cl(N)\). Therefore \(cl(N)\) is a pseudo-stable submodule of \(M\).

Proposition 2.2

Let \(M\) be an \(R\)-module such that each submodule of \(M\) is essential in its closure, then \(M\) is a pseudo-extending if and only if for any pseudo-extending if and only if for each pseudo-stable submodule \(N\) of \(M\), there exists an idempotent \(f \in \text{End}_R(E(M))\) such that \(N\) is essential in \(f(E(M))\) and \(f(M) \subseteq M\).

Proof

\(\Leftarrow\) Let \(N\) be a pseudo-stable submodule of \(M\), then there is a direct summand \(D\) of \(M\) such that \(N\) is essential in \(D\). Hence \(M = D \oplus H\) for some submodule \(H\) of \(M\). Thus we have \(E(M) = E(D) \oplus E(H)\).[12] Let \(f : E(M) \to E(D)\) be the projection homomorphism of \(E(M)\) onto \(E(D)\). Hence \(f\) is an idempotent [13]. Thus, we have \(f(M) \subseteq D \oplus H \subseteq D \subseteq M\). Now, since \(N\) is essential in \(D\) and \(D\) is essential in \(E(D)\), then \(N\) is essential in \(E(D) = f(E(M))\).

\(\Rightarrow\) Let \(N\) be a pseudo-stable submodule of \(M\), then by hypothesis there is an idempotent \(f \in \text{End}_R(E(M))\) such that \(N\) is essential in \(f(E(M))\) and \(f(M) \subseteq M\). Now since \(M\) is essential in \(M\), then, we have \(N = N \cap M\) is essential in \(M \cap f(E(M)) = f(M)\). But \(f(M)\) is a direct summand of \(M\).[13]. Hence \(M\) is a pseudo-extending module.

Recall that an \(R\)-module \(M\), with pseudo-stable closure is essential in a direct summand of \(M\).

Proof:

\(\Leftarrow\) Let \(K\) be a submodule of \(M\), with pseudo-stable closure. Then \(cl(K)\) is essential in direct summand of \(M\). Then by hypothesis \(K\) is essential in \(cl(K)\) and \(cl(K)\) is essential in \(D\). Hence \(K\) is essential in \(D\).[4]

\(\Rightarrow\) Let \(K\) be a pseudo-stable submodule of \(M\), then by Lemma 2.1 \(cl(K)\) is a pseudo-stable submodule of \(M\), thus by hypothesis \(K\) is essential in \(cl(K)\) and hence \(K\) is essential in a direct summand of \(M\). Therefore \(M\) is pseudo-extending.

Recall that an \(R\)-module \(M\) is a non-singular if

\[
\begin{align*}
\text{if } & [a] = \{2[a] = 3[a] = \ldots = 0 \text{ for some essential ideal } I \text{ of } M\} \\
& \text{then } [a] = 0.
\end{align*}
\]
Theorem 2.3
Let M be a non-singular R-module. Then the following statements are equivalent.

1. M is pseudo-extending.
2. Every closed pseudo-stable submodule of M is a direct summand of M.
3. Every pseudo-stable submodule of M is essential in a pseudo-stable direct summand of M.

Proof:
(1) \Rightarrow (2) Let K be a closed pseudo-stable submodule of M, then K is essential in a direct summand D of M. But K is closed submodule in M, so $K=D$. Hence K a direct summand of M.

(2) \Rightarrow (3) Let N be a pseudo-stable submodule of M. Since M is non-singular modules, thus there exists a closed submodule $c_{l}(N)$ such that N is essential in $c_{l}(N)$[8].

Since N is a pseudo-stable submodule of M, then $c_{l}(N)$ is a pseudo-stable submodule of M. Thus, by hypothesis $c_{l}(N)$ is a direct summand of M. That is N is essential in a pseudo-stable direct summand $c_{l}(N)$ of M.

(3) \Rightarrow (1) Trivial. \square

Before we give the next characterization, we introduce the following definition.

Definition 2.4
A submodule N of an R-module M is called hyperpseudo-stable, if $E(N)$ is a pseudo-stable submodule in $E(M)$. M is called fully hyperpseudo-stable if each submodule of M is hyperpseudo-stable.

Theorem 2.5
Let M be a fully hyperpseudo-stable R-module. Then M is pseudo-extending if and only if $E(N)$ is a pseudo-stable direct summand of M for each pseudo-stable direct summand A of $E(M)$.

Proof:
((\Rightarrow)) Let $N = M \cap A$, where A is a pseudo-stable direct summand of $E(M)$. Let $f: N \rightarrow M$ be an R-monomorphism. Since $E(M)$ is an injective, there exists $g \in End_{R}(E(M))$ such that g is extends f. Let n in N, then $f(n)$ in M, so, since $f(n) = g(n)$ and A is pseudo-stable submodule of $E(M)$, then $f(n) \in A$. Hence, we have $f(n) \in N = M \cap A$. Thus N is a pseudo-stable submodule of M. Now, we claim that N is a direct summand of M. Since M is pseudo-extending, then there exists a direct summand D of M such that N is essential in D. Since A is a direct summand of $E(M)$, and $E(M)$ is an injective, then A is an injective[12]. Since M is essential in $E(M)$, and A is essential in A, then $N = M \cap A$ is essential in $E(M) \cap A = A$. That is N is essential in A. Hence $E(N) = E(A)$. Since $N \subseteq A$ then $E(N) = A$, and $E(N) = E(D)$. Hence $E(D) = A$. That is, $D \subseteq M \cap E(D) = M \cap A = N$. So $N = D$. Therefore $M \cap A = N$.

((\Leftarrow)) Let K be a pseudo-stable submodule of M, then $K \oplus B$ is essential in M where B is a relative complement of K in M[2]. But M is essential in $E(M)$, then $K \oplus B$ is essential in $E(M)$. Now, since M is a fully hyperpseudo-stable, then K is a hyperpseudo stable submodule of M. That is $E(K)$ is a pseudo-stable submodule of $E(M)$. Hence by hypothesis $E(K) \cap M$ is a pseudo-stable direct summand of M. Since K is essential in $E(K)$ and M is essential in M, then $K = K \cap M$ is essential in $E(K) \cap M$. Therefore M is pseudo-extending. \square

Proposition 3.1
If M is a finitely generated torsion free R-module over principal ideal domain R. Then M is pseudo-extending module

Proof:
Let A be a pseudo-stable submodule of M, and let K be a submodule of M such that $A \subseteq K$ and K/A is the torsion submodule of M/A. Since M is finitely generated, then M/K is a finitely generated [5], then by third isomorphism theorem $M/K \cong (M/A)/(K/A)$. Since K/A is torsion submodule of M/A, then M/K is torsion free. Thus M/K is a finitely generated and torsion free R-module, so by [6] M/K is free R-module. Consider the following short exact sequence.

$0 \rightarrow K \xrightarrow{i} M \xrightarrow{f} M/K \rightarrow 0$

Since M/K is a free R-module, then by [7] the sequence splits. Thus K is a direct summand of M. To show that A is essential in K. Let $0 \neq y \in K$ and $y \notin A$. Hence
\[y + A \cong A. \] But \(K/A \) is the torsion submodule of \(M/A \), so there exists \(0 \neq r \in R \) such that \(r(x + A) = A \). That is, \(rx + A = A \).

Since \(M \) is torsion, then \(r x \neq 0 \), and \(rx \in A \). Thus \(A \) is essential in \(K \) and \(K \) is a summand of \(M \). Hence \(M \) is a pseudo-extending module.

Proposition 3.2

Let \(M \) be a hyperpseudo-stable \(R \)-module such that for every pseudo-stable summand \(B \) of \(E(M) \), \(B + M \) is a projective \(R \)-module, then \(M \) is a Ppseudo-extending module.

Proof:

Let \(B \) be a pseudo-stable summand of \(E(M) \). Consider the following short exact sequences

\[
\begin{align*}
0 & \rightarrow B \cap M \rightarrow M \rightarrow M/(B \cap M) \rightarrow 0 \\
0 & \rightarrow B \rightarrow B + M \rightarrow (B + M)/B \rightarrow 0
\end{align*}
\]

By second isomorphism theorem, we have: \(M/(B \cap M) \cong (B + M)/B \). But \(B \) is a summand of \(E(M) \) and \(B \subseteq B + M \), then \(B \) is a summand of \(B + M \) [11]. Thus the second sequence splits. But \(B + M \) is a projective, then \((B + M)/B \) is a projective.

But, \(M/(B \cap M) \cong (B + M)/B \), then \(M/(B \cap M) \) is a projective. Hence the first sequence is splits. Thus \(B \cap M \) is a summand of \(M \). To prove that \(M \) is a pseudo-stable summand of \(M \), let \(f : B \cap M \rightarrow M \) be an \(R \)-monomorphism. Since \(E(M) \) is injective, then there exists \(g \in \text{End}_R(E(M)) \) such that \(g \) extends \(f \). Let \(\eta \in B \cap M \), then \(f(\eta) \in M \), so since \(f(\eta) = g(\eta) \) and \(B \) is a pseudo-stable submodule of \(E(M) \), then \(f(\eta) \in B \).

Hence, we have \(f(\eta) \in B \cap M \). Thus \(B \cap M \) is a pseudo-stable summand of \(M \). Hence by Theorem 2.5 \(M \) is a pseudo-extending.

§3: Modules imply pseudo-extending modules

In this section we establish modules which imply pseudo-extending module.

Recall that an \(R \)-module \(M \) is torsion free, if

\[
T(M) = \{ r \in M : \exists r \in R, rm = 0 \} = \{0\}
\]

Definition 3.3

An \(R \)-module \(M \) is called a pseudo-stable uniform, if every non-zero pseudo-stable submodule of \(M \) is essential in \(M \).

Proposition 1.2.20

If \(M \) is a pseudo-stable uniform \(R \)-module, then \(M \) is a pseudo-extending.

Proof:

Let \(A \) be a pseudo-stable submodule of \(M \), then \(A \) is essential in \(M \), since \(M \) is a direct summand of \(M \), then \(A \) is essential in a direct summand of \(M \), hence \(M \) is a pseudo-extending.

References

[13]. Wisbauer, R. " Foundation of modules and rings theory" Gordon and Breac
المقاسات الموسعة الكاذبة ومفاهيم ذات علاقة

هيبة كريم محمد علي و حيران إبراهيم فارس سعيد

E.mail: scianb@yahoo.com

الخلاصة:
قدمنا في هذا البحث مفهوم مقياس التوسع الكاذب الذي يكون تعليم لمقاسات التوسع. تم الحصول على عدد من المكافات والخواص لهذا المفهوم. كذلك إعطاء مكافات لهذا المفهوم في بعض أصناف المقياسات. كذلك درسنا المقياسات التي تعطي مقاسات التوسع الكاذبة.