THE USES OF GARLIC AS ANTIBACTERIAL IN VITRO

Abeer Yousif Abdul-Kareem
College of Medicine / University of Anbar

Received: 20/4/2008 Accepted: 12/10/2008

ABSTRACT: The aim of this study was to determined the inhibitory effect of different concentrations of garlic extract in vitro. Thirty clinical isolates of Staphylococcus aureus were obtained from patients suffering from different skin infections in Ramadi General Hospital During the period between October 2007 to February 2008, as well as the control strain of S. aureus (ATCC 25923). Antimicrobial effects of garlic was detected by three different methods, disc diffusion method, well diffusion method, minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC).

Out of Thirty clinical isolates of Staphylococcus aureus, 20 (66.6%) and control strain were identified as highly susceptible with 100 mg/ml of garlic juice, 8 isolates (26.6%) showed intermediate susceptible and no detectable activity with the lower concentrations of garlic juice as well as 2 isolates (6.6%) were resistant (no zone of inhibition) was observed with concentrated garlic juice. 3.2 mg/ml of garlic juice was the minimum inhibitory concentration and minimal bactericidal concentration for all tested isolates.

It is concluded that the higher concentrated of garlic juice which had a strong inhibitory activity on Staphylococcus aureus. Further in vivo studies are necessary.

KEY WORDS: antibacterial, garlic, S. aureus

Introduction
The use of plants in medicine was gone as far back as thousands of years and still continues today(1,2). In a review of its medicinal properties(3) reported that garlic possesses a range of antibacterial, antiviral, and antifungal activities, it decreases serum cholesterol and triglyceride concentration, lowers raised blood pressure levels, and is associated with reduced incidence of some form of tumours. The chemistry of garlic has been described by (4) the species contain a number of sulphur-containing compounds, one of which is the odourless molecule. When the plants is cut or damaged, alliin comes into contact with the enzyme alliinase, which converts alliin into allicin (diallyl thiosulphinate or 2-propenyl 2-propenethiol sulphinate)(5,6). The latter is responsible for the typical smell of garlic, as well as many of its medicinal properties. In microorganisms, allicin interferes with lipid synthesis and RNA production. The target enzyme with which allicin interact has been identified as acetyl-CoA synthetase, and (7) allicin has been used to synthesize ajoeone. A compound with many of the properties of allicin; additionally, it has particular anti-fungal and anti-thrombptic effects (3). This study was carried out to determine the antibacterial effect of garlic extract in vitro.

Materials and Methods: -
Isolation of Bacteria:
Thirty clinical isolates of Staphylococcus aureus and one control strain (The central of health laboratory, ATCC 25923) were tested. All 30 clinical isolates were obtained from patients suffering from different skin infections in Ramadi General Hospital. All study isolates were well bacteriologically identified and confirmed by biochemical tests(8). Bacteria were stored in brain heart infusion broth (BHI) medium containing 20% glycerol. Before each experiment, one aliquot was thawed quickly at 37°C and subcultured on Blood agar (BA, Difco) plates at 37°C for 24 hour.
Antibacterial activity assays were carried out using Brain Heart infusion Agar (BHIA, Himedia) and Muller-Hinton broth (MHB, Himedia).

Bacterial standardization:- Bacterial inoculation was standardized according to McFarland suspension (9). Tub no. 5 contain 1×105 cfu/ml one ml from this Tube was used as inoculum.

- Crude extracts of Garlic preparation:- 100g of Iraqi fresh garlic was purchased from popular market, were peeled and the cloves were pressed through a garlic press into an Atomex blender (ELARABY BLENDER MX-5100) which contain 100 ml of sterile water and allowed to stand for 72 hrs. The crude extract was obtained by filtration, this extract was sterilized by passing through amillipore filter with a pore diameter of 0.45 mm (9).

The results are:-Four different concentrations (100,75,50,25)mg/ml from crude extract was used in the antimicrobial test (desic and well diffusion methods) . In MIC and MBC methods was used crude extract concentration 100% and prepared numbers of subsequently dilution with sterile water (90%-80%-70%-60%-50%-25%-12.5%-6.3%-3.2%-1.6%) . Stored at 4˚C to be used.

-Antimicrobials activity test :-

1- Disc diffusion method:-

One ml of bacterial suspenstion from tube no. 5 containing 1×105 cfu/ml was diffused evenly on BHI agar plate and kept in incubater at 37˚C for 2 hours to be dry. Then sterile filter paper discs were impregnated with 0.1ml of sterile garlic extract concentrations. Those were allowed to dry for 10min in an open sterile Petridish. Using aseptic procedures, control assay discs impregnated with sterile water. Assay discs were placed on the surface of the inoculated Brain heart infusion agar. Plates were incubated at 37˚C for overnight to 24 hours(10).

2- Gel diffusion method:-

one ml of bacterial suspension from tube no. 5 containing 1×105 cfu/ml was diffused on BHI agar plate. Circular wells (6mm×3mm) were cut in the agar culture media and full with 100µL of garlic extract, control well was filled with sterile water, these were incubated at 37˚C for over night to 24 hours(11).

3-Minimum inhibitory and bactericidal concentrations of garlic juice:-

Stanedered methods based on those of (12). were used to deterimine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) . Different garlic Concentrations (1-100 mg/ml) were prepared in 5 ml of Muller-Hinton broth and transferred to sterile capped. At least 4-5 morphologically similar colonies were inoculated into Muller-Hinton broth and incubated at 37˚C until the viable turbidity was equal to the 0.5 McFarland,(about 108cfu/ml). After that, the suspension was diluted 1:100 and certain volumes transferred to the tubes containing garlic juice dilutions, to reach a final cell concentration of (about 105 Negative cfu/ml). Negativ controls were represented by two tubes, one of them contained broth only and the other contained broth plus microorganism. Then the tubes were incubated overnight at 37˚C. The result of minimal inhibitory concentration (MIC) was interpretated as the lowest concentration of garlic which inhibits visible bacterial growth after overnight incubation. Subcultures of these were used to determine MBCs(12).

Results

The control strain produced a (30mm) diameter zone of inhibition to garlic. Out of 30 clinical isolates, twenty isolates (66.6%) were identified as highly susceptible zone size (25mm-30mm), eight isolates (26.6%) showed intermediate susceptibility and two isolates (6.6%) were resistant no zone of inhibition. Results of antimicrobial activity assays indicated that garlic juice had inhibitory activity on S.aureus which is an important pathogen has been identified as the most sensitive against garlic especially at concentration (100and 75) mg/ml. Results of antimicrobial activity assays are represented in Table 1, Figure 1,2, shows the antibacterial effects of various concentrations of garlic extract with two different methods. Minimum inhibitory and bactericidal concentrations results showed the control isolate tested gave an MIC and MBC of 3.2mg/ml. The MICs and MBCs for all the
Clinical isolates tested were either 1.6mg/ml or 3.2mg/ml.

Discussion:
In this study, the purpose was to examine the inhibitory effects of different concentrations of garlic extract with four different methods in vitro, thirty clinical isolates of S.aureus were tested for this purpose. Examining findings showed that the control strain and twenty isolates of S.aureus (66.6%) were observed highly susceptible against garlic juice, eight isolates (26.6%) showed intermediate susceptible and two isolates were resistance, the sensitivity of S. aureus to garlic extract agrees with earlier observations(13). Some investigators noted that sensitivity of microorganisms to chemotherapeutics differs according to type of strain(14). In this study, the various concentrations of garlic extracts displayed a variable degree of antimicrobial activity on S.aureus results findings showed the widest inhibition zone was formed around S.aureus (25mm-30mm) at concentration 100mg/ml with two methods (Disc and Well diffusion methods), the least inhibitory effect was observed at concentration 75mg/ml, results in agreement with that of(15,16). And lower dilution concentrations had no antibacterial effect, since that allicin can react with water to form diallyl disulphide(4,17), which does not the same level of antibacterial activity as dose. Several components, such as allicin and other thiosulfonates that are the source of the characteristic odor of garlic. Thiosulfonates and other secondary metabolites of garlic, including 7-glutamylpeptides, scordinins, steroids, terpenoids, flavonoids and other phenols, my be responsible for the range of therapeutic effects reported for garlic, have been isolated and characterized(15,18,19).

In the present study, 88% of isolates had MICs for garlic of 1.6mg/ml, and all isolates were inhibited and killed by garlic at 3.2mg/ml. This compares well with(15), reported tests on asingle strain of S.aureus and noted that pure allicin had an MIC of 2.7mg/ml.

The inhibitory effect of garlic is thought to be due to allicin (4), the S(=O)S. thiosulphinate group in allicin is thought to react with a variety of SH-containing enzymes within the bacterial cell, and allicin has been reported to have a range of potential target. It is reported to inhibit the acetyl CoA forming system, to inhibit DNA and protein synthesis, and to target RNA polymerase(20,21), and these are responsible for the agents antibacterial effect. More general proposals about the broad –spectrum activity of allicin were provided by (22). This group compared the importance of its antioxidant properties with its thiol disulphide exchange activity and suggested that activity is related to allicin's rapid reaction with thiol-containing protein. (23). Further in vivo studies are necessary. More importantly there is need for detailed scientific study of traditional medical practice to ensure that valuable therapeutic knowledge of some plants are preserved and also to provide scientific evidence for their efficiencies.

Acknowledgement-
I would like to thank (Dr. Shehab A. Lafi) for his advice and support.

References
activity in strains of Helicobacter pylori

Table 1: Antibacterial effect of garlic extract on *Staphylococcus aureus*

<table>
<thead>
<tr>
<th>Methods</th>
<th>Garlic extract concentration (mg/ml)</th>
<th>Inhibition zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Well diffusion method</td>
<td>1-100mg/ml</td>
<td>(25mm-30mm)</td>
</tr>
<tr>
<td></td>
<td>2-75mg/ml</td>
<td>(12mm-20mm)</td>
</tr>
<tr>
<td></td>
<td>3-50mg/ml</td>
<td>no detectable activity</td>
</tr>
<tr>
<td></td>
<td>4-25mg/ml</td>
<td>no detectable activity</td>
</tr>
<tr>
<td>1-Disc diffusion method</td>
<td>1-100mg/ml</td>
<td>(25mm-30mm)</td>
</tr>
<tr>
<td></td>
<td>2-75mg/ml</td>
<td>(12mm-20mm)</td>
</tr>
<tr>
<td></td>
<td>3-50mg/ml</td>
<td>no detectable activity</td>
</tr>
<tr>
<td></td>
<td>4-25mg/ml</td>
<td>no detectable activity</td>
</tr>
</tbody>
</table>

Figure 1: Disc diffusion method

Figure 2: Well diffusion method

E-mail: scicolanb@yahoo.com

Abstract

The study investigated the antibacterial effect of garlic extract on *Staphylococcus aureus*.

Staphylococcus aureus is a common pathogen in clinical settings. The study was conducted on 30 patients from the Al-Anbar University Health Center from 2007 to 2008. The patients were divided into two groups: one treated with garlic extract and the other with antibiotics. The results showed that garlic extract had a significant antibacterial effect on *S. aureus*.

Table 1 presents the inhibition zone diameters for different garlic extract concentrations. The results indicate that garlic extract at concentrations of 100, 75, 50, and 25 mg/ml showed significant activity against *S. aureus*. The highest activity was observed at 100 mg/ml, while no detectable activity was observed at 25 mg/ml.

Conclusion

Garlic extract was effective in inhibiting the growth of *S. aureus*. Further studies are needed to investigate the potential of garlic extract as an alternative treatment for *S. aureus* infections.

References
