On Artin Cokernel of the Group D_{nh} When n is an Odd Number

Hussein Hadi Abbas
AL-Kufa university
College of Education for Girls/ Department of Mathematics
Email: msc_Hussien@yahoo.com

Maany Abd Al-Moneem Said
AL-Kufa university /College of Mathematics
An
d Department of Mathematics

Abstract

The group of all Z-valued characters of G over the group of induced unit characters from all cyclic subgroups of G forms a finite abelian group, called Artin Cokernel of G, denoted by $AC(G) = \bar{R}(G)/T(G)$

The problem of finding the cyclic decomposition of Artin cokernel $AC(D_{nh})$ has been considered in this paper when n is an odd number, we find that if $n = p_1^{a_1} p_2^{a_2}... p_m^{a_m}$, where $p_1, p_2,..., p_m$ are distinct primes and not equal to 2, then

$$AC(D_{nh}) = \bigoplus_{i = 1}^{2(\alpha_1+1)(\alpha_2+1)...(\alpha_m+1)-1} C_2$$

$$= \bigoplus_{i = 1}^{2} AC(D_{n}) \bigoplus C_2$$

And we give the general form of Artin's characters table $Ar(D_{nh})$ when n is an odd number.

المستخلص

إن زمرة كل الشواخص العمومية ذات القيم الصحيحة للزمرة G على زمرة الشواخص المحتملة من الشواخص الأحادية للزمرة الجزئية الدائرية من الزمرة G تكون زمرة أبيلية متميزة و تسمى النواة المشترك – أرتن – للزمرة D_{nh}، ويرمز لها بالرمز $AC(G) = \bar{R}(G)/T(G)$. إن مسألة إيجاد التجزئة الدائرية لزمرة القسمة $AC(G)$ قد أُعتبرت في هذه الرسالة للزمرة D_{nh} عندما n عدد فردي، فقد

$$n = p_1^{a_1} p_2^{a_2}... p_m^{a_m}$$

حيث إن $a_1, a_2,..., a_m$ أعداد أولية مختلفة لا تساوي 2 فإن:
Introduction:

The abelian group of all Z-valued characters of a finite group G under the operation of pointwise addition over the group of induced unit characters form all cyclic subgroups of the group G (Artin characters) form a finite abelian group which is called Artin Cokernel of the group G, denoted by $AC(G)$. The problem of determining the cyclic decomposition of $AC(G)$ seem to be untouched . In this work, G is considered to be the dihedral group D_{nh} when n is an Odd number . To do this work we must do the following steps:

1. We must know the rational valued characters table of the group D_{nh}, $\equiv^*(D_{nh})$.
2. We must find Artin characters table of the group D_{nh}, $Ar(D_{nh})$.
3. We must find the matrix which expresses the Artin characters of the group D_{nh} in terms of rational valued characters, $M(D_{nh}) = Ar(D_{nh}) . (\equiv^* D_{nh})^{-1}$.
4. From (3) we must find the invariant factors matrix $M(D_{nh})$.
5. From (4) we can find the cyclic decomposition of $AC(D_{nh})$.

The exponent of $AC(G)$ is called the Artin exponent of the group G, denoted by $A(G)$. In 1968 T.Y Lam [15] defined $AC(G)$ and he studied $AC(G)$, when G is acyclic group.

In 2000 H.R.Yassien [6] studied the cyclic decomposition of $AC(G)$ when G is an elementary abelian group . In 2002 H.H.Abbass [5] found $\equiv^*(D_n)$. In 2006 A.S.Abed [2] found $Ar(C_n)$ when C_n is the cyclic group of order n . In this paper, we find $Ar(D_{nh})$ and we study $AC(D_{nh})$ of the nonabelian group D_{nh}, when is an odd number.

1. Some Basic Concepts:-

In this section, we shall give basic concepts, notations and theorems about matrix representation, characters and Artin characters, which will be used in the next sections.

Definition (1.1):[2]

The general Linear group $GL(n,F)$ is a multiplicative group of all non-singular $n \times n$ matrices over the field F.

Definition (1.2):[3]

A matrix representation of a group G is a homomorphism of G into $GL(n,F)$, n is called the degree of matrix representation T. In particular, T is called a unit representation (principal) if $T(g)=1$, for all $g \in G$.

Definition (1.3):[3]

The trace of an $n \times n$ matrix A is the sum of the main diagonal elements, denoted by $\text{tr}(A)$.
Definition (1.4):[3]
Let T be a matrix representation of degree n of a finite group G over the field F. The character χ of degree n of T is the mapping $\chi : G \rightarrow F$ defined by $\chi(g) = \text{tr}(T(g))$ for all $g \in G$. In particular, the character of the principal representation ($\chi(g) = 1$, for all $g \in G$) is called the principal character.

Definition (1.5):[3]
Two elements g and h in the group G are said to be conjugate if $h = xgx^{-1}$, for some $x \in G$. The relation of conjugacy is an equivalence relation on G. The equivalence classes determined by this relation are referred to as the conjugate classes and C_{L_g}, $g \in G$ is the conjugate class of the element g.

Definition (1.6):[3]
The centralizer of x in G is the subgroup $C_G(x) = \{a \in G : a x a^{-1} = x\}$.

Definition (1.7):[3]
Let H be a subgroup of G and ϕ be a character of H, the induced character on G is given by

$$
\phi^G(g) = \frac{1}{|H|} \sum_{x \in G} \phi^\circ(xgx^{-1})
$$

where $g \in G$ and ϕ° is defined by

$$
\phi^\circ(h) = \begin{cases}
\phi(h) & \text{if } h \in H \\
0 & \text{if } h \notin H
\end{cases}
$$

Theorem (1.8):[6]
Let H be a cyclic subgroup of G and h_1, h_2, \ldots, h_m are chosen representatives for the m-conjugate classes of H contained in C_{L_g}, $g \in G$, then

$$
\phi^G(g) = \begin{cases}
\frac{|C_G(g)|}{|C_H(g)|} \sum_{i=1}^{m} \phi(h_i) & \text{if } h_i \in H \cap C_{L_g} \\
0 & \text{if } H \cap C_{L_g} = \emptyset
\end{cases}
$$

Definition (1.9):[6]
Let G be a finite group, any character induced from the principal character of cyclic subgroup of G is called Artin character of G.

Definition (1.10):[9]
Two elements of the group G are said to be Γ-conjugate if the cyclic subgroups they generate are conjugate in G. This defines an equivalence relation on G. Its classes are called Γ-classes.
Proposition (1.11):[15]
The number of all distinct Artin characters on a group G is equal to the number of \(\Gamma \)-classes on G.

Definition (1.12):[2]
The information about Artin characters of a finite group G is displayed in a table called Artin characters table of G, denoted by Ar(G) which is \(l \times l \) matrix whose columns are \(\Gamma \)-classes and rows the values of all Artin characters on G, where \(l \) is the number of \(\Gamma \)-classes.

Definition (1.13):[3]
A rational valued character \(\theta \) of G is a character whose values are in the set of integers \(\mathbb{Z} \), which is \(\theta(g) \in \mathbb{Z} \) for all \(g \in G \).

Proposition (1.14):[12]
The number of all distinct rational valued characters of a finite group G equals the number of \(\Gamma \)-classes on G.

Definition (1.15):[12]
The information about rational valued characters of a finite group G is displayed in a table called the rational valued characters table of G, denoted by \(\equiv^* \(G \) \) which is \(l \times l \) matrix whose columns are \(\Gamma \)-classes and rows are the values of all rational valued characters of G, where \(l \) is the number of \(\Gamma \)-classes.

Theorem [Artin] (1.16):[9]
Every rational valued character of a finite group G can be written as a Linear combination of Artin's characters with coefficient rational numbers.

2. The Factor Group AC(G):

The definition of the factor group AC(G) was introduced by T.Y Lam [15] in 1967. The applications of the factor group AC(G) not only in the mathematics but also in physics and chemistry.

In this section we shall study AC(G), dihedral group \(D_n \) and \(\equiv^* \(D_n \) \), when \(n \) is an odd number.

Definition (2.1):[15]
Let \(\overline{R}(G) \) be the group of \(\mathbb{Z} \)-valued generalized characters of G under the operation pointwise addition and T(G) is the normal subgroup of \(\overline{R}(G) \) generated by Artin's characters.
The abelian factor group \(\overline{R}(G)/T(G) \) is called Artin's Cokernel of G, denoted by AC(G).

Definition (2.2):[12]
Let \(M \) be a matrix with entries in a principle domain \(R \). A \(K \)-minor of \(M \) is the determinant of \(K \times K \) Submatrix preserving row and column order.

Definition (2.3):[12]
A \(K \)-th determinant divisor of \(M \) is the greatest common divisor (g.c.d) of all \(K \)-minor, denoted by \(D_K(M) \).

Theorem (2.4):[12]
Let \(M \) be an \(n \times n \) matrix with entries in a principle domain \(R \), then there exist matrices \(P \) and \(W \) such that
1- \(P \) and \(W \) are invertibles.
2- \(P \cdot M \cdot W = D \).
3- \(D \) is a diagonal matrix.
4- If we denote \(D_{jj} \) by \(d_j \) then there exists a natural number \(m \); \(0 \leq m \leq n \) such that \(j > m \) implies \(d_j = 0 \) and \(j \leq m \) implies \(d_j \neq 0 \) and \(1 \leq j \leq m \) implies \(d_j/d_{j+1} \).
Definition (2.5):[12]

Let \(M \) be a matrix with entries in a principal domain \(R \), and equivalent to matrix \(D = \{ d_1, d_2, \ldots, d_m, 0, 0, \ldots, 0 \} \), Such that \(d_j/d_{j+1} \) for \(1 \leq j \leq m \), \(D \) is called the invariant factor matrix of \(M \) and \(d_1, d_2, \ldots, d_m \) the invariant factors of \(M \).

Remark (2.6):

According to the Artin theorem (1.16) there exists an invertible matrix \(M(G) \) with entries in the field of rational \(\mathbb{Q} \) such that \(\equiv^*(G) = M^{-1}(G) \cdot \text{Ar}(G) \) and this implies \(M(G) = \text{Ar}(G) \cdot (\equiv^*(G))^{-1} \).

By theorem (2.4) there exists two matrices \(P(G) \) and \(W(G) \) such that \(P(G) \cdot M(G) \cdot W(G) = \text{diag} \{ d_1, d_2, \ldots, d_l \} = D(G) \), where \(d_j = \pm D_j(M(G))/D_{j+1}(M(G)) \) and \(l \) is the number of \(\Gamma \)-classes.

Theorem (2.7):[6]

\[
AC(G) = \bigoplus_{j=1}^{l} C_{d_j} \text{ where } d_j = \pm D_j(M(G))/D_{j+1}(M(G)), \quad l \text{ is the number of all distinct } \Gamma \text{-classes and } C_{d_j} \text{ is cyclic subgroup of order } d_j.
\]

Theorem(2.8): [14]

If \(n \) is an odd number such that \(n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_m^{\alpha_m} \), where \(p_1, p_2, \ldots, p_m \) are distinct primes, then:

\[
(\alpha_1+1)(\alpha_2+1) \cdots (\alpha_m+1) - 1
\]

\[
AC(D_n) = \bigoplus_{i=1}^{l} C_2
\]

Proposition (2.9):[12]

Let \(P \) be a prime number, then the rational valued characters table of cyclic group \(C_p^s = \langle r \rangle \) is given by \(\equiv^*(C_p^s) = \)

<table>
<thead>
<tr>
<th>(\Gamma)-Classes</th>
<th>([1])</th>
<th>([r^{p-1}])</th>
<th>([r^{p-2}])</th>
<th>([r^{p-3}])</th>
<th>(\cdots)</th>
<th>([r^{p}])</th>
<th>([r])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0_1)</td>
<td>(p^{s-1}(p-1))</td>
<td>(-p^{s-1})</td>
<td>0</td>
<td>0</td>
<td>(\ldots)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0_2)</td>
<td>(p^{s-2}(p-1))</td>
<td>(p^{s-2}(p-1))</td>
<td>-p^{s-2}</td>
<td>0</td>
<td>(\ldots)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0_3)</td>
<td>(p^{s-3}(p-1))</td>
<td>(p^{s-3}(p-1))</td>
<td>(p^{s-3}(p-1))</td>
<td>-p^{s-3}</td>
<td>(\ldots)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\vdots)</td>
</tr>
<tr>
<td>(0_{s-1})</td>
<td>(p(p-1))</td>
<td>(p(p-1))</td>
<td>(p(p-1))</td>
<td>(p(p-1))</td>
<td>(\ldots)</td>
<td>(p(p-1))</td>
<td>-p</td>
</tr>
<tr>
<td>(0_s)</td>
<td>(p-1)</td>
<td>(p-1)</td>
<td>(p-1)</td>
<td>(p-1)</td>
<td>(\ldots)</td>
<td>(p-1)</td>
<td>(p-1)</td>
</tr>
<tr>
<td>(0_{s+1})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(\ldots)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Remark (2.10) :- In general if \(n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_m^{\alpha_m} \) where \(p_1, p_2, \ldots, p_m \) are distinct primes, then
\[
\equiv^* (C_n) = \equiv^* (C_{p_1}^{\alpha_1}) \otimes \equiv^* (C_{p_2}^{\alpha_2}) \otimes \cdots \otimes \equiv^* (C_{p_m}^{\alpha_m})
\]
where \(\otimes \) is the tensor product.

Definition (2.12):[9]

The dihedral group \(D_n \) is a certain non-abelian group of order \(2n \), it is usually thought a group of transformations of Euclidean plane of regular \(n \)-polygon consisting of rotation \((r^k) \) (about the origin) with angle \(2\pi k/n \) and reflections \(sr^k \) (a cross lines through the origin).

In general it can be written as
\[
D_n = \{S^k : 0 \leq k \leq n-1, \theta \leq \phi \leq \pi \}, \text{where } r^n = 1, S^2 = 1, S \cdot r^k \cdot S = r^{-k}.
\]
The cyclic group of order \(n \), \(C_n = \langle r \rangle \) is a normal subgroup of \(D_n \).

Definition (2.12) [9]

The group \(D_{nh} \) is the direct product group \(D_n \times C_2 \), where \(C_2 \) is a cyclic group of order 2 consisting of elements \{1, r'\} with \((r')^2 = 1 \). It is of order \(4n \).

Proposition (2.13): [5]

The rational valued characters table of \(D_n \) when \(n \) is an odd number is given as follows:

\[
\equiv^*(D_n) =
\begin{array}{c|c|c}
\Gamma - \text{classes of } C_n & [S] \\
\hline
\theta_1 & \equiv^*(C_n) & 0 \\
\vdots & \vdots & \vdots \\
\theta_{S-1} & 0 \\
\theta_S & 1 & 1 & 1 & \ldots & 1 & 1 & 1 \\
\theta_{S+1} & 1 & 1 & 1 & \ldots & 1 & 1 & -1 \\
\end{array}
\]

Where \(S \) is the number of \(\Gamma - \) classes of \(C_n \).

Theorem(2.14) : [13]

The rational valued characters table of the group \(D_{nh} \) when \(n \) is an odd number is given as follows:
\[
\equiv^*(D_{nh}) = \equiv^*(D_n) \otimes \equiv^*(C_2)
\]
Theorem (2.15):[2]
Let \(p \) be a prime number, then \(\text{Ar}(C_p^s) = \)

<table>
<thead>
<tr>
<th>(\Gamma)-Classes</th>
<th>[1]</th>
<th>(r^{P_1})</th>
<th>(r^{P_2})</th>
<th>(r^{P_3})</th>
<th>(\ldots)</th>
<th>[r]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi_1)</td>
<td>(p^s)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>(\varphi_2)</td>
<td>(p^{s-1})</td>
<td>(p^{s-1})</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>(\varphi_3)</td>
<td>(p^{s-2})</td>
<td>(p^{s-2})</td>
<td>(p^{s-2})</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>(\vdots)</td>
</tr>
<tr>
<td>(\varphi_s)</td>
<td>(p)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\varphi_{s+1})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

Remark (2.16):
Let \(n \) be any positive integer and
\[
\begin{bmatrix}
1 & 1 & 1 & \ldots & 1 & 1 \\
0 & 1 & 1 & \ldots & 1 & 1 \\
0 & 0 & 1 & \ldots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{bmatrix}
\]
\[
\begin{bmatrix}
1 & -1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & -1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & -1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1
\end{bmatrix}
\]

Where \(\otimes \) is the tensor product.

Proposition (2.17):[13]
If \(P \) is a prime number and \(S \) is a positive integer, then
\[
M(C_{p^s}) = \begin{bmatrix}
1 & 1 & 1 & \ldots & 1 & 1 \\
0 & 1 & 1 & \ldots & 1 & 1 \\
0 & 0 & 1 & \ldots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{bmatrix}
\]
\[
P(C_{p^s}) = \begin{bmatrix}
1 & -1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & -1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & -1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1
\end{bmatrix}
\]

And \(W(C_p^s) = I_{S+1} \) where \(I_{S+1} \) is the identity matrix.
Remark (2.18):

1. In general if \(n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_m^{\alpha_m} \) such that \(p_1, p_2, \cdots, p_m \) are distinct primes and \(\alpha_i \) any positive integers for all \(i = 1, 2, \ldots, m \); then \(C_n = C_{p_1^{\alpha_1}} \times C_{p_2^{\alpha_2}} \times \cdots \times C_{p_m^{\alpha_m}} \). and

\[
M(C_n) = M(C_{p_1^{\alpha_1}}) \otimes M(C_{p_2^{\alpha_2}}) \otimes \cdots \otimes M(C_{p_m^{\alpha_m}}).
\]

So, we can write \(M(C_n) \) as:

\[
M(C_n) = \begin{bmatrix}
1 & & & & \\
& R(C_n) & & & \\
& & 1 & & \\
& & & 1 & \\
0 & 0 & 0 & \cdots & 0 & 1
\end{bmatrix}
\]

Where \(R(C_n) \) is the matrix obtained by omitting the last row \(\{0, 0, \ldots, 0, 1\} \) and the last column \(\{1, 1, \ldots, 1\} \) from the tensor product,

\[
M(C_{p_1^{\alpha_1}}) \otimes M(C_{p_2^{\alpha_2}}) \otimes \cdots \otimes M(C_{p_m^{\alpha_m}}). \quad \text{M(Cn) is}, \quad (\alpha_1 +1)(\alpha_2 +1) \cdots (\alpha_m +1) \times (\alpha_1 +1)(\alpha_2 +1) \cdots (\alpha_m +1) \text{ square matrix.}
\]

2.

\[
\alpha - P(C_n) = P(C_{p_1^{\alpha_1}}) \otimes P(C_{p_2^{\alpha_2}}) \otimes \cdots \otimes P(C_{p_m^{\alpha_m}}).
\]

\[
\beta - W(C_n) = W(C_{p_1^{\alpha_1}}) \otimes W(C_{p_2^{\alpha_2}}) \otimes \cdots \otimes W(C_{p_m^{\alpha_m}}).
\]

3. The Main Results

In this section we give the general form of Artin characters table of the group \(D_{4n} \) and the cyclic decomposition of the factor group \(AC(D_{4n}) \) when \(n \) is an odd number.
Theorem (3.1):
The Artin characters table of the group $D_{n\text{h}}$ when n is an odd number is given as follows:

$$\text{Ar}(D_{n\text{h}}) = \begin{bmatrix}
1 & 1 & 2 & 2 & \ldots & 2 & n & n \\
4n & 4n & 2n & 2n & \ldots & 2n & 4 & 4
\end{bmatrix}$$

Table (3.1)

<table>
<thead>
<tr>
<th>Γ-Classes</th>
<th>$[1,1']$</th>
<th>$[1,r']$</th>
<th>Γ-Classes of $C_n \times C_2$</th>
<th>$[S,1]$</th>
<th>$[S,r']$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\text{CL}_\alpha</td>
<td>$</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$</td>
<td>C_{D_{n\text{h}}}(\text{CL}_\alpha)</td>
<td>$</td>
<td>4n</td>
<td>4n</td>
<td>2n</td>
</tr>
<tr>
<td>$\Phi_{(l,1)}$</td>
<td></td>
<td></td>
<td>2Ar(C_α) \otimes Ar(C_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_{(l,2)}$</td>
<td></td>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$\Phi_{(l+1,1)}$</td>
<td></td>
<td></td>
<td>$\Phi_{(l+1,1)}$</td>
<td>2n</td>
<td>0</td>
</tr>
<tr>
<td>$\Phi_{(l+1,2)}$</td>
<td></td>
<td></td>
<td>$\Phi_{(l+1,2)}$</td>
<td>2n</td>
<td>0</td>
</tr>
</tbody>
</table>

where l is the number of Γ-classes of C_α and $C_2 = <r'> = \{1', r'\}$.

Proof:-

By theorem (2.15)

$$\text{Ar}(C_2) = \begin{bmatrix}
\Gamma\text{- classes} & [1'] & [r'] \\
|\text{CL}_\alpha| & 1 & 1 \\
|C_2(\text{CL}_\alpha)| & 2 & 2 \\
\varphi_1' & 2 & 0 \\
\varphi_2' & 1 & 1
\end{bmatrix}$$

Table (3.2)

Each cyclic subgroup of the group $D_{n\text{h}}$ is either a cyclic subgroup of $C_n \times C_2$ or $<(S,r')>$ or $<(S,1')>$.

If H is a cyclic subgroup of $C_n \times C_2$, then:
H=H_1<1'> or H_2< r'> = H_1C_2 for all 1 \leq i \leq l where l is the number of \Gamma- classes of C_n
If H= H_1<1'> and g \in D_{nh}
If g \notin H then by theorem (1.8)
\Phi_{(1,i)}(g)=0 for all 0 \leq i \leq l [since H \cap CL(g) = \phi]
If g \in H then either g=(1,1') or \exists S, 0 < S < n such that g=(r^S,1')

When g=(1,1') then :
\Phi_{(1,1)}(g) = \left| \frac{C_{D_{nh}}(g)}{C_H(g)} \right| \phi(g) [since H \cap CL(g)=\{(1,1')\}] where \phi is the principle character (i.e
\phi(g)=1 \forall g \in D_{nh})
= \frac{4n}{|H_1 \times <1'>|} \cdot 1 = \frac{4n}{|H_1|} \cdot 1 = 2 \cdot \frac{|C_{C_2}(1)|}{|C_H(1)|} \cdot \phi_1(1) \cdot \phi_1'(1') = 2 \cdot \phi_1(1) \cdot \phi_1'(1')

For g=(r^S,1') then
\Phi_{(i,1)}(g) = \left| \frac{C_{D_{nh}}(g)}{C_H(g)} \right| \sum_{i=1}^{2} \phi'(g) [since H \cap CL(g)=\{(r^S,1'),(r^{-S},1')\}]
= \frac{2n}{|H_1 \times <1'>|} \cdot (1+1)
= \frac{2n}{|H_1|} \cdot 2
= 2 \cdot \frac{n}{|H_1|} \cdot 2 \cdot \frac{|C_{C_2}(r^S)}{|C_H(r^S)|} \cdot \phi(r^S) \cdot \phi'(1') = 2 \cdot \phi_1(r^S) \cdot \phi_1'(1')

If H= H_2< r'> = H_1 \times C_2
let g \in D_{nh}
if g \notin H then
\Phi_{(i,2)}(g)=0 for all 1 \leq i \leq l [since H \cap CL(g) = \phi]
If g \in H then either g=(1,1') or g=(1,r') or \exists S, 0 < S < n such that g=(r^S,r')

When g=(1,1')
\[\Phi_{(i,2)}(g) = \frac{|C_{D_{o}}(g)|}{|C_{H}(g)|} \varphi(g) \quad [\text{since } H \cap CL(g) = \{(1,1')\}] \]

\[= \frac{4n}{|H_i \times C_2|} = \frac{4n}{2|H_i|} = \frac{2n}{|H_i|} = 2 \frac{|C_{o}(1)|}{|C_{H_i}(1)|} \varphi(1) = 2 \cdot \varphi_1(1) \cdot \varphi_2'(1) \]

For \(g = (1,r') \)

\[\Phi_{(i,2)}(g) = \frac{|C_{D_{o}}(g)|}{|C_{H}(g)|} \varphi(g) \quad [\text{since } H \cap CL(g) = \{(1,r')\}] \]

\[= \frac{4n}{|H_i \times C_2|} = \frac{4n}{2|H_i|} = 2 \frac{|C_{o}(1)|}{|C_{H_i}(1)|} \varphi(1) = 2 \cdot \varphi_1(1) \cdot \varphi_2'(r') \]

and if \(g = (r^s,r') \)

\[\Phi_{(i,2)}(g) = \frac{|C_{D_{o}}(g)|}{|C_{H}(g)|} \sum_{i=1}^{2} \varphi'(g) \quad [\text{since } H \cap CL(g) = \{(r^s,r'),(r^{-s},r')\}] \]

\[= \frac{2n}{|H_i \times C_2|} (1+1) = \frac{4n}{2|H_i|} = \frac{2n}{|H_i|} = 2 \frac{|C_{o}(r')|}{|C_{H_i}(r')|} \varphi(r') \varphi_2'(r') = 2 \cdot \varphi_1(r') \varphi_2'(r'). \]

If \(H = (S,1') = \{(1,1'),(S,1')\} \)

\[\Phi_{(l+1,1)} ((1,1')) = \frac{|C_{D_{o}}((1,1'))|}{|C_{H}((1,1'))|} \varphi(g) = \frac{4n}{2} = 2n \]

\[\Phi_{(l+1,1)} ((S,1')) = \frac{|C_{D_{o}}((S,1'))|}{|C_{H}((S,1'))|} \varphi(g) \quad [\text{since } H \cap CL((S,1')) = \{(S,1')\}] \]

\[= \frac{4}{2} = 2 \]

otherwise

\[\Phi_{(l+1,1)} (g) = 0 \quad \text{for all } g \in D_{nh}, \text{since } g \notin H \]

If \(H = (S,r') = \{(1,1'),(S,r')\} \)

417
\[\Phi_{(l+1,2)} ((1,1')) = \frac{\begin{bmatrix} C_{D_{\alpha}} ((1,1')) \\ C_{H} ((1,1')) \end{bmatrix} \varphi ((1,1')) }{[since \ H \cap CL((1,1')) = \{ (1,1') \}]} \]

\[= \frac{4n}{2} \cdot 1 = 2n \]

\[\Phi_{(l+1,2)} ((S, r')) = \frac{\begin{bmatrix} C_{D_{\alpha}} ((S, r')) \\ C_{H} ((S, r')) \end{bmatrix} \varphi ((S, r')) }{[since \ H \cap CL(g) = \phi]} \]

\[= 4 \cdot 1 = 2 \]

Otherwise \(\Phi_{(l+1,2)} (g) = 0 \) for all \(g \in D_{nh} \) since \(H \cap CL(g) = \phi \)

Example (3.2):

To find \(Ar(D_{2197}) \) by using theorem(3.1)

\(Ar(D_{2197}) = Ar(D_{3^3}) = 2Ar(C_{3^3}) \otimes Ar(C_2) \)

by using theorem(2.15) we get

\begin{table}[h]
\begin{tabular}{|c|c|c|c|c|}
\hline
\multicolumn{5}{|c|}{\Gamma-classes} \\
\hline
\(|CL_{\alpha}| \) & \([1] \) & \([r^{13}] \) & \([r^{13}] \) & \([r] \) \\
\hline
\hline
\(|C_{3^3} (CL_{\alpha})| \) & \(13^3 \) & \(13^3 \) & \(13^3 \) & \(13^3 \) \\
\hline
\hline
\(\delta_1 \) & \(13^3 \) & 0 & 0 & 0 \\
\hline
\(\delta_2 \) & \(13^2 \) & \(13^2 \) & 0 & 0 \\
\hline
\(\delta_3 \) & 13 & 13 & \(r^{13} \) & 0 \\
\hline
\(\delta_4 \) & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\end{table}

\(Table (3.3) \)

\begin{table}[h]
\begin{tabular}{|c|c|c|}
\hline
\multicolumn{3}{|c|}{\Gamma-classes} \\
\hline
\(|CL_{\alpha}| \) & \([1'] \) & \([r'] \) \\
\hline
\hline
\(|C_{2} (CL_{\alpha})| \) & 2 & 2 \\
\hline
\hline
\(\delta_1 \) & 2 & 0 \\
\hline
\(\delta^2 \) & 1 & 1 \\
\hline
\end{tabular}
\end{table}

\(Table (3.4) \)
So we get $\text{Ar}(D_{2197h})$

$$\Gamma$$-classes

| $|CL_{\alpha}|$ | $[1,1']$ | $[1,r']$ | $[r_{13}^2,1']$ | $[r_{13}^2,r']$ | $[r_{13},1']$ | $[r_{13},r']$ | $[r,1']$ | $[r,r']$ | $[S,1']$ | $[S,r']$ |
|----------------|----------|----------|-----------------|-----------------|-----------------|-----------------|----------|----------|----------|----------|
| $|C_{C3}(CL_{\alpha})|$ | 8788 | 8788 | 4394 | 4394 | 4394 | 4394 | 4394 | 2197 | 2197 |
| $\phi_{(1,1)}$ | 8788 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\phi_{(1,2)}$ | 4394 | 4394 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\phi_{(2,1)}$ | 676 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\phi_{(2,2)}$ | 338 | 338 | 338 | 338 | 0 | 0 | 0 | 0 | 0 |
| $\phi_{(3,1)}$ | 52 | 0 | 52 | 0 | 52 | 0 | 0 | 0 | 0 |
| $\phi_{(3,2)}$ | 26 | 26 | 26 | 26 | 26 | 0 | 0 | 0 | 0 |
| $\phi_{(4,1)}$ | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 0 |
| $\phi_{(4,2)}$ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 |
| $\phi_{(5,1)}$ | 4394 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
| $\phi_{(5,2)}$ | 4394 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |

Table(3.5)
Proposition (3.3):

If \(n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_m^{\alpha_m} \) where \(p_1, p_2, \ldots, p_m \) are distinct primes and \(p_i \neq 2 \) for all \(1 \leq i \leq m \) and \(\alpha_i \) any positive integers, then:

\[
M(D_{\text{nh}}) = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

\[
2R(C_n) \times M(C_2)
\]

\[
\begin{bmatrix}
0 & 0 & \cdots & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & \cdots & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & \cdots & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & \cdots & 1 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

which is \(2\left[(\alpha_i + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_m + 1) + 1 \right] \times 2\left[(\alpha_i + 1) \cdot (\alpha_2 + 1) \cdots (\alpha_m + 1) + 1 \right] \) square matrix.

Proof:

By theorem (3.1) we obtain the Artin characters table \(\text{Ar}(D_{\text{nh}}) \) and from theorem (2.14) we find the rational valued characters table \(\equiv (D_{\text{nh}}) \). Thus by the definition of \(M(G) \) we can find the matrix \(M(D_{\text{nh}}) \) :
Journal of Kerbala University, Vol. 8 No. 4 Scientific, 2010

\[
M(D_{nh}) = \text{Ar}(D_{nh}) \cdot (D_{nh})^{-1} = 2R(C_{r}) \times M(C_{z})
\]

Which is \(2\left[(\alpha_{1} + 1) \cdot (\alpha_{2} + 1) \cdots + 1\right] \times 2\left[(\alpha_{1} + 1) \cdot (\alpha_{2} + 1) \cdots + 1\right]\) square matrix.

Example (3,4):

To find \(M(D_{1331h}) = M(D_{113h})\) we must find

\[
R(C_{11}^{3}) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
\]

Which is \(3 \times 3\) square matrix.

and \(M(C_{2}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\)

Hence
\[M(D_{11}^3) = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix} \]

\[2R(C_{11^3}) \otimes M(C_2) = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0
\end{bmatrix} \]

\[M(D_{11}^3) = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix} \]

\[= \begin{bmatrix}
2 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 1 \\
0 & 2 & 0 & 2 & 0 & 2 & 1 & 0 & 1 \\
0 & 0 & 2 & 0 & 2 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 2 & 1 & 1 & 1 & 1
\end{bmatrix} \]

Which is 10×10 square matrix
Proposition (3.5):

If \(n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_m^{\alpha_m} \) such that \(p_1, p_2, \ldots, p_m \) are distinct primes different from 2 and \(\alpha_i \) any positive integers, then

\[
P(D_{nh}) = \begin{bmatrix}
0 & 0 \\
0 & 0 \\
P(C_n) \otimes P(C_2) \\
0 & 0 \\
-1 & -1 \\
0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

and

\[
W(D_{nh}) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & -1 & \cdots & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & -1 & 0 & 1 & 0 \\
1 & 1 & \cdots & 1 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Where \(k = 2([\alpha_1 + 1] \cdot [\alpha_2 + 1] \cdot [\alpha_3 + 1] \cdots [\alpha_m + 1] - 1) \times 2([\alpha_1 + 1] \cdot [\alpha_2 + 1] \cdot [\alpha_3 + 1] \cdots [\alpha_m + 1] - 1) \)

They are \(2([\alpha_1 + 1] \cdot [\alpha_2 + 1] \cdots [\alpha_m + 1] + 1) \times 2([\alpha_1 + 1] \cdot [\alpha_2 + 1] \cdots [\alpha_m + 1] + 1) \) square matrix.

Proof:

By using theorem (2.4) and taking the form of \(M(D_{nh}) \) from proposition (3.3) and the above forms of \(P(D_{nh}) \) and \(W(D_{nh}) \) then we

Have

423
P(D_{nh}), \ M(D_{nh}), \ W(D_{nh})=
\begin{bmatrix}
2 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & \ldots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & \ldots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}

= \text{diag}\{2,2,\ldots,-2,1,1,1\} = D(D_{nh})

Which is $2[(\alpha_1+1)\cdot(\alpha_2+1)\cdot(\alpha_m+1)+1] \times 2[(\alpha_1+1)\cdot(\alpha_2+1)\cdot(\alpha_m+1)+1]$ square matrix.

Example (3.6):

Consider the group D_{27869h}, then we can find the matrices $P(D_{27869h})$, $W(D_{27869h})$ immediately by using proposition (3.5) and by proposition (3.3) we find $M(D_{27869h})$.

To find $P(D_{27869h}) = P(D_{31^2.29h})$

By remark (2.18-2) $P(C_{31^2.29}) = P(C_{31^2}) \otimes P(C_{29})$

Then $P(C_{31^2}) \otimes P(C_{29}) \otimes P(C_2) = \begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} \otimes \begin{bmatrix}
1 & -1 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix} \otimes \begin{bmatrix}
1 & -1 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}$

$$= \begin{bmatrix}
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}$$

By proposition (3.5)
Then \(P(D_{27869h})\). \(M(D_{27869h})\). \(W(D_{27869h}) = \)

\[
\begin{bmatrix}
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & -1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\times
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\times
\begin{bmatrix}
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 \\
0 & 0 & 2 & 2 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
Which is \(2^{[(2+1)-(1+1)+1]}2^{[(2+1)-(1+1)+1]}=14 \times 14\) square matrix.

Theorem (3.7):

If \(n = P_1^{\alpha_1} \cdot P_2^{\alpha_2} \cdots P_m^{\alpha_m}\) where \(P_1, P_2, \cdots, P_m\) are distinct primes, \(P_i \neq 2\) and \(\alpha_i\) any positive integers for all \(i, 1 \leq i \leq m\), then the cyclic decomposition \(AC(D_{nh})\) is:
\[
2((\alpha_1+1)(\alpha_2+1)\cdots(\alpha_m+1))-1
\]

\[
\text{AC}(D_{\text{nh}}) = \bigoplus_{i=1}^{2} C_2
\]

\[
= \bigoplus_{i=1}^{2} \text{AC}(D_n) \bigoplus C_2
\]

Proof:

From proposition (3.5) we have

\[
P(D_{\text{nh}}) \cdot M(D_{\text{nh}}) \cdot W(D_{\text{nh}}) = \text{diag}\{2,2,2,\ldots,-2,1,1,1\} = \{d_1,d_2,\ldots\},
\]

\[
d_{2((\alpha_1+1)(\alpha_2+1)\cdots(\alpha_m+1))-1},
\]

\[
d_{2((\alpha_1+1)(\alpha_2+1)\cdots(\alpha_m+1))-1}.
\]

By theorem (2.7) we get

\[
2((\alpha_1+1)(\alpha_2+1)\cdots(\alpha_m+1))-1
\]

\[
\text{AC}(D_{\text{nh}}) = \bigoplus_{i=1}^{d_i} C_2
\]

\[
= \bigoplus_{i=1}^{2} \text{AC}(D_n) \bigoplus C_2
\]

From theorem (2.8) we have:

\[
\text{AC}(D_{\text{nh}}) = \bigoplus_{i=1}^{2} \text{AC}(D_n) \bigoplus C_2
\]

Example (3.8):

To find the cyclic decomposition of the groups AC(D_{29791h}), AC(D_{25054231h})

and AC(D_{576247313h}).

by using above theorem:

\[
2(3+1)-1 = 7
\]

\[
\text{AC}(D_{29791h}) = \bigoplus_{i=1}^{2} C_2 = \bigoplus_{i=1}^{7} C_2 = \bigoplus_{i=1}^{2} \text{AC}(D_{31^3}) \bigoplus C_2.
\]
\[
2((3+1)(2+1))-1 = 23 \\
AC(D_{2504231h}) = AC(D_{31^{\frac{3}{2}2^{\frac{1}{2}}}}) = \bigoplus_{i=1}^{2} C_2 = \bigoplus_{i=1}^{2} C_2 \\
\]

\[
2 = \bigoplus_{i=1}^{2} AC(D_{31^{\frac{3}{2}2^{\frac{1}{2}}}} C_2 . \\
2((3+1)(2+1)(1+1))-1 = 47 \\
2 \cdot AC(D_{576247313h}) = AC(D_{31^{\frac{3}{2}2^{\frac{1}{2}}2^{\frac{1}{2}}}}) = \bigoplus_{i=1}^{2} C_2 = \bigoplus_{i=1}^{2} C_2 \\
\]

\[
2 = \bigoplus_{i=1}^{2} AC(D_{31^{\frac{3}{2}2^{\frac{1}{2}}2^{\frac{1}{2}}}} C_2 . \\
\]

References :-