Effect of the Mechanical and Thermal Stresses of Rotating Blades

Assist. Prof. Dr. Nabeel K. AL-sahib Malik M. Ali
Baghdad University / AL-Khwarizmi College of Engineering

(Received 1 December 2006; accepted 25 April 2007)

Abstract:
Rotating blades are the important parts in gas turbines. Hence, an accurate mathematical estimation (F.E.M) of the stresses and deformations characteristics was required in the design applications to avoid failure. In recent year’s there are researchers interest in the effect of temperature on solid bodies has greatly increased, The main of this study investigated the thermal and rotational effects. So, the thermal stresses due to high pressure and temperature are studies, also determine the steady state stresses and deformations of rotating blades due to mechanical effect. Many parameters such as thickness and centre of rotating are investigated in this paper. The study results can ensure good recommendation for the effect of the mechanical and thermal stresses of rotary blades.

Keywords: Thermal Stresses, Finite Element Method, Mechanical Stresses, Blade Material, Design.

Introduction
Rotating blades was one of the common structural elements used in several practical machines such as turbomachinery system, turbojet engines, turbofan, and helicopter rotors. Because turbomachinery blades are assumed as a shell, the numerical technique should be capable of representing this complicated structure based upon the shell theory. In this paper the type of rotating blades were used is rectangular blade, the geometry for this type was show in figure (1). Ramamurti and Sreenivasamurthy [1] studied the dynamic stress analysis of rotating twisted and tapered blades. The finite element method was used to determine the stresses and deformations. Three-dimensional, twenty-node isoparametric elements have been used for the analysis. Extensive analysis has been done for various pre-twist angles, skew angles, breadth to length ratios, and breadth to thickness ratios of the blades. Experiments were carried out to determine the stresses for the verification of the numerical results. Lee [2] determined the frequencies and mode shapes of turbomachinery blade having both camber and twist. The body forces were considered to be centrifugal forces generated within the shell due to rotation of the blade. Omprakash and Ramamurti
metal. But for high temperature gas turbines, “Nimonic” alloy series are recommended. They are basically Nickel-Chromium alloys, which withstand oxidation, mechanical stresses, and creep at working temperatures in excess of 1000°C. In the middle part of the turbine, the temperature and stress conditions are moderate, but corrosion is likely. Brass is probably the most suitable material.

In the final stages, and especially in large machines, the blades are long and heavily stressed. Fatigue action due to vibration may exist. Further than this, anti corrosion properties are also desirable. Brass is a suitable material where the stress conditions allow of its use, but when the stresses are high, 5% Nickel Steel, Stainless Steel, Monel metal or Phosphor Bronze may be used.

Turbine Blade Design

Turbine blades operate at 1400°C and are required to have a service life of 10000-20000 hours. The techniques used to meet these requirements are:

1) The use of nickel based superalloys (containing many precipitates, solid solution atoms and having high oxidation resistance)

2) The blades are cast a single crystal. This means that there are no grain boundaries within the structure and thus minimizes creep see Fig. (2)

3) The blades are internally cooled to allow increased operating temperatures. Typical cooling design features are shown in Fig. (3)

4) The blades are coated to increase the oxidation resistance as shown in Fig. (4). A timeline of techniques to raise engine-operating temperatures is shown in Fig. (5 & 6)

Blade Materials

The elimination of blade corrosion and designing against creep and fatigue, to a large extent, is a problem of finding suitable materials. Another factor, especially in high-pressure work, is the working temperature of the blades. Under high temperatures, some materials tend to disintegrate, and certain mechanical properties, e.g. hardness (in the sense of resistance to abrasion), are affected adversely.

The properties, which are desirable for example in turbine blading, vary according to the conditions of operation and according to the location of the blading in the turbine [5]. At high-pressure end, the temperature is high, and the blades are sometimes subjected to erosive action. Great strength is not required as the blades are usually short. The material should be hard at high temperatures. Suitable materials are 5% Nickel Steel, Stainless Steel and Monel.
Finite Element technique

The difficulties in evaluating the stress and deformations of rotating blades comes from the complex geometry of blades due to asymmetry of cross-section, pre-twist, and mounting the blades at a skew angle to the rotating disk. The pre-twist and skew of the blade cause coupling in both bending directions, and the asymmetry of the cross-section causes coupling with the tensional motion of the blade. For the above complexities, all previous investigations in this field had declared that plate or shell analysis for blades is suitable and reliable. Therefore, the shell theories with finite element provide a useful tool to analyze such structures. A superparametric shell element will be used to investigate the thermal and mechanical stresses of rotating blades. This element consists of four corner and four midside nodes as shown in Fig. (7).

The degrees of freedom considered are the three translations \(u, v, w\) of the midsurface and two rotations \(\alpha, \beta\) of the normal to the midsurface. The Cartesian coordinates of any point of the shell and the curvilinear coordinates can be written in the form:

\[
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
= \sum_{i=1}^{8} f_i \begin{bmatrix}
 x_i \\
 y_i \\
 z_i
\end{bmatrix} + \sum_{i=1}^{8} N_i \zeta \frac{h}{2} f_i \begin{bmatrix}
 \alpha_i \\
 \beta_i
\end{bmatrix} \ldots \ldots (1)
\]

where \(l_{3i}, m_{3i}\) and \(n_{3i}\) are the direction cosines of the normal to the middle surface. Here \(f_i\) is a function taking a value of unity at the node \(i\) and zero at all other nodes, it is called as “shape function “(4).as shown in table.(1).

In the kinematics formulation two assumptions are imposed:

1. Nodal fiber is inextensible.
2. Only small rotations are considered.

The displacements at any point \((\xi, \eta, \zeta)\) can be expressed in terms of the nodal displacements as

\[
\begin{bmatrix}
 u \\
 v \\
 w
\end{bmatrix} = \sum_{i=1}^{8} f_i \begin{bmatrix}
 v_i \\
 w_i
\end{bmatrix} + \sum_{i=1}^{8} N_i \zeta \frac{h}{2} f_i \begin{bmatrix}
 \alpha_i \\
 \beta_i
\end{bmatrix} \ldots \ldots (2)
\]

In this formula the symbol \(\mu_i\) denote the following matrix:

\[
\mu_i = \begin{bmatrix}
 -l_{2i} & l_{1i} \\
 -m_{2i} & m_{1i} \\
 -n_{2i} & n_{1i}
\end{bmatrix}
\]

Column 1 in this array contains negative values of the direction cosines of the second tangential vector \(V_{2i}\), and column 2 has the direction cosines for the first tangential vector \(V_{1i}\). These vector are orthogonal to the vector \(V_{3i}\) and to each other.

The strain in the direction the normal to the mid-surface is assumed to be negligible \(\varepsilon_{zz}\).

The normal to the mid-surface of the shell element will remain normal to the mid-surface after deformation. The displacement shape functions may be cast into the matrix form:

\[
[f_i] = [f_{Ai}] + \zeta [f_{Bi}] \quad (i=1,2\ldots8) \ldots \ldots (3)
\]

where

\[
[f_{Ai}] = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix}, \quad f_i \&
\]

\[
[f_{Bi}] = \begin{bmatrix}
 0 & 0 & 0 & -l_{2i} & l_{1i} \\
 0 & 0 & 0 & -m_{2i} & m_{1i} \\
 0 & 0 & 0 & -n_{2i} & n_{1i}
\end{bmatrix} \frac{h}{2} f_i \ldots \ldots (4)
\]

The 3 X 3 Jacobian matrix required in this formulation is:
where \(\cdot \cdot \cdot \) indicate differentiation with respect to the symbol following the comma.

The derivatives in matrix \([J]\) can be found from equation (1)

\[
\begin{align*}
J_{ij} = \sum_{k=1}^{8} f_{ijk} \zeta_k i_j l_{3i} \\
J_{i\eta} = \sum_{k=1}^{8} f_{i\eta k} \zeta_k i_j l_{3i} \\
J_{i\xi} = \sum_{k=1}^{8} f_{i\xi k} h_{ij} l_{3i}
\end{align*}
\]

so on

For this element, six types of non-zero strains exit, as follows:

\[
\varepsilon = \begin{bmatrix}
\varepsilon_x & \varepsilon_y & \varepsilon_z \\
\gamma_{x\eta} & \gamma_{x\zeta} & \gamma_{x\xi}
\end{bmatrix} = \begin{bmatrix}
u_{x\zeta} \\
v_{x\zeta} \\
w_{x\zeta}
\end{bmatrix}
\]

The stress-resultant vector in the local coordinate system is,

\[
\{f\} = \{f_x \quad f_y \quad f_{xy} \quad Q_x Q_y Q_{xy} M_x M_y M_{xy}\}^T
\]

where \(Q_{xy}\) was the shear stress per unit length in the \(x\) and \(y\) direction. The relationship between the stress resultants and the generalized strains can be stated as follows,

\[
\{f\} = [D']\{\varepsilon\}
\]

where \([D']\) is the rigidity matrix. A typical rigidity matrix for flat plate shell is given

\[
[D'] = \frac{E h}{1 - \nu^2} \begin{bmatrix}
1 & \nu & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\nu & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 + \frac{k}{2\nu} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 + \frac{k}{2\nu} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 + \frac{k}{2\nu} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 + \frac{k}{2\nu} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 + \frac{k}{2\nu} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 + \frac{k}{2\nu} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 + \frac{k}{2\nu} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 + \frac{k}{2\nu}
\end{bmatrix}
\]

\(k =\)shear shape factor (assumed \(k=1.2\)) \(^5\).

Numerical Solution

Two cases were studied, steady state and thermal stresses as follows:

Steady-State Analysis

In this section the steady state stresses and deformations were calculated. The blades considered were made of steel; and the material properties are: modules of elasticity = \(207 \times 10^3\) Mpa, Poisson’s ratio = 0.3, Density = 7850 kg/m\(^3\). Other information are: Speed of rotation = 5000 r.p.m, Disk radius/width = 4, width = 0.05m. In this respect, a numerical study for a rectangular cross-section blade is given in details because it is a common model.

Comparison of the results

A comparison with experimental published results is achieved between the present work and the experimental work \([1]\).

In this comparison, a rectangular steel blade is considered, having the following dimensions and material properties: Length = 100 mm, Width = 25 mm, Thickness = 3 mm, Skew angle = 90°, Radius to root = 125 mm, and maximum speed of rotation = 2500 r.p.m, Modulus of elasticity = \(207 \times 10^3\) Mpa, Poisson’s ratio = 0.3, Density = 7850 kg/m\(^3\). Strain gauges were used as transducers and the results are shown in Table 2

Effect of Rotational speed

The variation of stresses and deformations with eight speeds of rotation (250, 500, 750, 1000, 1250, 1750, and 2000 r.p.m) for three aspect
ratios (3, 4, and 5) are investigated and shown in fig. (9,10, and 11) show the variations of v-deflection, xx- stresses, yy-stresses respectively with speed of rotation. It was observed that stresses and deformations increase that when the speed of rotation increased too.

Effect of thickness

In order to investigate the thickness of blade, eight thickness (1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5 mm) and three aspect ratios (3, 4 and 5) were selected for this investigated. Figs (12, 13, and 14) show the variations of v-deflection, xx-stresses, yy-stresses respectively with thickness. It can be noted that increases of the blade thickness leads to decreases in the stresses and deformations (i.e. thin blades give greater stresses and deformations than the thick blades) and that due the higher reduction in the structural stiffness. Also, it can be seen that when the aspect ratio increases the reduction in stresses and deformations increases.

Blade Deflection due to Thermal Stresses

The blade is relatively thin, and thus the thermal gradient through the thickness of the blade is assumed negligible. Therefore, the blade is assumed to have a uniform temperature equal to the surface temperature. This simplifies the thermal stress analysis and results in a simple linear relation:[12]

\[u=\alpha TL \](10)

Where \(L \) = blade length (m), \(\alpha \) = thermal expansion coefficient \((1/C^o)\) and \(T \)=Temperature \((C^o)\). Figs (15, 16, 17, and 18) show the variations of temperature u-deflection, xx-stresses, yy-stresses respectively with x-axis and Figs (19, 20, 21, and 22) show the contour of temperature, u-deflection, xx-stresses, yy-stresses respectively. It can be noted that increases of the blade temperature leads to increase in the stresses and deformations

Conclusions:

The conclusions obtain from the present work can be summarized as when the increases of the blade thickness leads to decrease in the stresses and deformation, (i.e. thin blades give greater stresses and deformations than the thick blades) and

that is due to the higher reduction in structural stiffness, the generated stresses will be increases for the blades having large aspect ratios, as well as the deformations become large, since the total mass of the structure is proportional to the aspect ratio. The increases of the blade temperature leads to increase in the stresses and deformations so, shaped film-cooling and full coverage film cooling are the most useful cooling schemes for reducing the amount of cooling air and decreasing thermal stresses.
a- General rectangular fan blade.

b- Rectangular fan blade with skew angle.

c- Rectangular fan blade with pre-twist angle.

Fig. (1) The geometry of rectangular fan blade.
Fig. (2) Turbine blades cast to promote different grain structures [9]

Fig. (3) Blade cooling techniques [10]

Fig. (4) History of turbine blade coating systems [11]
Fig. (5) Developments to increase engine-operating temperatures [10]

Fig. (6) Developments to increase turbine metal capability [8]

Fig. (7) Eight noded shell element
Serendipity 8-node element:

Corner nodes: \(f_i = \frac{1}{4}(1 + \xi_i)(1 + \eta_i)(\xi_i + \eta_i, -1) \)

Midside nodes: \(f_i = \frac{1}{2} \xi_i^2 (1 + \xi_i)(1 - \eta_i^2) + \frac{1}{2} \eta_i^2 (1 + \eta_i)(1 - \xi_i^2) \)

Table 1 (Shape Function for Midsurface Interpolation of Shell Elements)

<table>
<thead>
<tr>
<th>(\alpha^o)</th>
<th>Distance</th>
<th>Exp. (Mpa)</th>
<th>Present work (Mpa)</th>
<th>(\Omega) (r.p.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1 L</td>
<td>9.1154</td>
<td>9.0086</td>
<td>2500</td>
</tr>
<tr>
<td>15</td>
<td>0.25 L</td>
<td>5.7115</td>
<td>5.5613</td>
<td>2000</td>
</tr>
</tbody>
</table>

Table 2 (Comparison with experimental results. (radial stress))

This page was created using Nitro PDF trial software. To purchase, go to http://www.nitropdf.com/
Fig. (9) Variation of v-deflection with speed of rotation

Fig. (10) Variation of xx-stresses with speed of rotation

Fig. (11) Variation of yy-stresses with speed of rotation

R=0.225 m, h=0.0018 m
Skew angle =20°
Pre-twist angle = 12°
Al-alloy (5052)
Fig. (12) Variation of v-deflection with thickness

Fig. (13) Variation of xx-stresses with thickness

Fig. (14) Variation of yy-stresses with thickness
Fig. (15) Variation of temperature with x-axis

Fig. (16) Variation of u-deflection with x-axis

Fig. (17) Variation of xx-stresses with x-axis

Fig. (18) Variation of yy-stresses with x-axis
Fig. (19) Contour of temperature

Fig. (20) Contour of u-deflection
Fig. (21) Contour of xx-stresses

Fig. (22) Contour of yy-stresses
Reference:

5- Kearton, W. J., ”Steam turbine operation”, Sir Petman & Sons, Ltd., 4th ed. 1945

12- Aeronautical Materials – Teacher Reference, School of Material Science and Engineering, University of New South Wales 2001
Internet links

General aerospace
http://www.howstuffworks.com/sc-aviation-transportation.htm
http://www.matweb.com/
http://www.howstuffworks.com/airplane.htm
http://www.howstuffworks.com/search/index.htm?words=materials+engineering
http://smc.larc.nasa.gov/coe/
http://as.wm.edu/Nondestructive.html
http://www.grc.nasa.gov/WWW/HSR/EPMAirf.html
http://www.grc.nasa.gov/WWW/HSR/ind
http://www.boeing.com/commercial/aeromagazine/aero_07/corrosn.html
http://www.boeing.com/commercial/747family/background.html
http://www.boeing.com/commercial/747family/index.html

Turbines and materials
http://www.gas-turbines.com/begin/index.htm#HISTORY
http://www.howstuffworks.com/turbine.htm
http://www.sti-tech.com/
تأثيرات الأجهادات الميكانيكية والحرارية للمراوح الدوارة

م.د. نبيل كاظم عبد الصاحب
كلية هندسة الخوارزمي - جامعة بغداد

الخلاصة:
المراوح الدوارة هي من الأجزاء الهامة في التوربينات الغازية، لذلك أن التمثيل الرياضي (طريقة العناصر المحدودة) للأجهادات والتشوهات ضروري من أجل التفتيقات التصميمية لتجنب الفشل. في السنوات الأخيرة زاد اهتمام الباحثين بتأثير درجات الحرارة على الأجسام الصلبة. الهدف الرئيسي من هذه الدراسة، دراسة الأجهادات الحرارية الناتجة من الضغط ودرجة الحرارة العالية. وكذلك تم أحاسب الأجهادات المستقرة والتشوهات للمراوح الدوارة الناتجة من التأثيرات الميكانيكية. العديد من العوامل تم التقصي عنها في هذا البحث مثل السمك ومركز الدوران ... ألخ.

نتائج الدراسة تؤمن توصيات جيدة لتأثيرات الأجهادات الميكانيكية والحرارية للمراوح الدوارة.