Comparative study between the prophylactics Effects of aqueous extract of Black Currant (Vitis vinferia.L) and vitamin E on some biological parameters related with heart diseases in oxidative Stressed rats

Abdul-Katum, A. H. and Khudair, K.K.
Dept. Of physiology and Pharmacology- College of vet. Med. - Baghdad University - Iraq

Summary
This study was designed to investigate the prophylactic effect of aqueous extract of black currant concentrate on some biological markers related with heart disease in male rat treated H2O2. It also aimed at comparing the prophylactic effect of black currant concentrate to that of vit E.

Forty adult male rats were divided randomly into equal groups (ten rat/group) & were treated as follows for 42 days. Rats in the first group (G І) were received normal water with oral intubation of sun flower oil 1ml /rat and consider as control group. Animals of the second group (G ІІ) were received 0.5% H2O2 in drinking water, while rats of the third group (G ІІІ) were received 0.5% H2O2 in drinking water with oral intubation of vit E 400 I.U/Kg.B.W diluting in sun flower oil for each rat daily .While animals in the fourth group (G ІV) were intubated daily 60mg/kg body weight of aqueous extract of black currant concentrate plus 0.5% H2O2 in drinking water.

Fasting blood samples were collected at 0, 21, and 42 days of experiment to study the following parameters:
A - Platelet count (PC) and prothrombin time (PT).
B- Serum concentration of total cholesterol TC, triacylglycerol TAG, High density lipoprotein-cholesterol HDL-C, Low density lipoprotein-cholesterol LDL-C and Very low density lipoprotein- cholesterol VLDL-C of each group were measured. These parameters were regarded as biomarkers of atherosclerosis and coronary heart disease (CHD). Furthermore section of heart & aorta were assessed for histopathogical studies.

The result revealed that administration of 0.5% H2O2 in drinking water for six weeks (42days) caused significant increase (p<0.05) in platelet count & in serum TC,TAG,LDL-C, and VLDL-C concentration with significant decrease(p<0.05) in prothrombin time and HDL-C concentration as compared to other groups, on other hand oral intubation of vitamin E or aqueous extract of black currant concentrate in addition to H2O2 (groups ІІІ and ІV respectively) decreased the serum concentration of TC, TAG, LDL-C, VLDL-C, and platelet count.
comparing to H2O2 treated group & the control. Besides, the black currant concentrate and vitamin E caused significant elevation in serum HDL-C concentration & prothrombin time.

Histological study revealed that 0.5% H2O2 intubation initiated aortic atheromatus lesions characterized by collagen proliferation, thickness of the intima, infiltration of inflammatory cells& focal foamy cell in subintimal layer with narrowing of the blood vessels. While histological section of aorta& heart of H2O2 plus black currant concentrate showed complete regression of atheromatus lesions caused by H2O2 intubation.

It seems that black currant concentrate exert protective actions against H2O2 induced oxidative stress, atherosclerosis & change in some biological Markers related to heart disease. Such effects were more effective than vitamin E in some parameters.

According to the available literature it seems that this is the first study showed the antiatherosclerotic properties of aqueous extract of black currant concentrate & it’s more potent than vitamin E in this issue.
دراسة مقارنة بين التأثير الوقائي للمستخلص المائي لمركز الزبيب الأسود وفيتامين ه على بعض المعايير الفسلبية المتعلقة بإمراض القلب في الجرذان المعرضة للإجهاد التاكسدي

خالصة كاظم خضير - عامر حسن عبد الكاظم
فرع الفسمجة والأدوية - كلية الطب البيطري - جامعة بغداد - العراق

الخلاصة

صممت هذه الدراسة لمعرفة التأثير الوقائي لمركز الزبيب الأسود في بعض المعايير الحيوية المتعلقة بامراض القلب في ذكور الجرذان البالغة المعطاة بيروكسيد الديودجين بتركيز 50.0% مع ماء الشرب ومقارنتهم مع فيتامين ه. تم استخدام 40 من ذكور الجرذان البالغة وقسمت عشوائيا إلى أربعة مجاميع متساوية (عشرة حيوانات / مجموعه) وعملت كنائي لعدة 42 يوم. أعطت الجرذان في المجموعة الأولى (GI) الماء العادي مع التجريع الفموي لزيت زهرة الشمس (1ملي / حيوان) وعدت كمجموعة سيطرة، في حين أعطت حيوانات المجموعة الثانية (GII) الماء الاعتيادي مضافا إليه بيروكسيد الديودجين بتركيز (0.5%).أما المجموعة الثالثة (GIII) فقد أعطيت 0.5% من بيروكسيد الديودجين مع الماء بالإضافة إلى التجريع الفموي لفيتامين ه 40/كغم/يوم مذابة في زيت زهرة الشمس في حين جرعت المجموعة الرابعة (GIV) المستخلص المائي لمركز الزبيب الأسود بجرعة 60مل /كغم/وزن الجسم إضافة إلى الماء الحاوي على بيروكسيد الديودجين بنفس التراكيز أعلاه. تم جمع عينات الدم في الأيام 0، 21 و 42 من التجربة لغرض إجراء الفحوصات التالية:

- العدد الكلي للصفائح الدموية platelet count (PC)
- زمن تخثر البروثرومبين prothrombin time(PT)
- فحوصات المصل وشملت قياس تركيز الكوليسترول الكلي TC وقياس تركيز كولستيرول ثلاثي HDL-C وقياس تركيز الكوليسترول في الشحوم البروتينية ذات الكثافة العالية (TAG) وقياس تركيز الكوليسترول في الشحوم البروتينية ذات الكثافة الواطئة (LDL-C) وقياس تركيز الكوليسترول في الشحوم البروتينية ذات الكثافة الواطئة (VLDL-C)
- بالإضافة إلى اختبارات توصيف كمقبيس لتصليح النسيجي وأمراض القلب الوعائية (CHD)

أظهرت النتائج حديث زيادة معنوية (0.5%) في عدد الصفائح الدموية وتركيز كل من TC، VLDL-C، LDL-C، TAG، HDL-C. النتيجة تشير إلى احتمالية وجود تأثير واقعي للمركز الزبيب الأسود على الوقاية من أمراض القلب.

229
حول الداء في المجموعة المعاملة بيروكسيد الهيدروجين لمدة 42 يوماً، إضافةً إلى حدوث انخفاض ممثليً (0.05<P<0.01) في زمن تخثر البروثرومبين وتركيز HDL-C ومجموعة IV ومجموعة III وละ مقارنة مع المجامع الأخرى. كما أظهرت النتائج أن التجريج الفموي لمركز الزبيب الأسود أو فيتامين E مع بيروكسيد الهيدروجين مجموعة VII أدت إلى حدوث انخفاضاً معنويً في تركيز TAG، LDL-C وTC. في مصل الدم وعدد الصفحات الدموية مقارنة مع مجامعي السيطرة، وذلك المعاملة بيروكسيد الهيدروجين وكما تسببت أعطاء مركز الزبيب الأسود أو فيتامين E إلى حدوث ارتفاعًا معنويً في تركيز HDL-C ومجموعة VII ومجموعة IV. بينما كانت النتائج في مصل الدم زمن تخثر البروثرومبين، بينت نتائج الفحص النسيجي في المجموعة المعاملة على التصلب العصيدي في أبهير الجرذان المعاممة ببيروكسيد الهيدروجين والتي تتميز بكثرة الكولاجين وزراعة السمك النسيجي في الخلايا الخضوية و مجرد الخلايا الدموية، ووجود الخلايا الدهنية الموجودة في الطبقة تحت الحشوية مع تضيق الوعاء الدموي، بينما تظهور المقلع النسيجي للقلب والأوعية. في المجموعة المعاملة بـ 0.5% من بيروكسيد الهيدروجين ومركز الزبيب الأسود أكمل كل أفات التصلب العصيدي الذي سبب بيروكسيد الهيدروجين، بينما لم تظهر النتائج هذه الدراسة التأثير الواقعي لمركز الزبيب الأسود ضد الإجهاد التاكسدي المستحدث بيروكسيد الهيدروجين في بعض المعايير الحيوية المتعلقة بإمراض القلب وكان أكثر فعالية من فيتامين E في بعض المقصات. وطبقًا للمراجع المتوفرة تعتبر هذه الدراسة الأولى التي تظهر التأثير المضاد لتصيب الشرايين لمركز الزبيب الأسود وكان أقوى مقارنة فيتامين E في هذا المجال.

Introduction

The medicinal and nutritional value of grapes (Vitis vinifera) has been heralded for thousands of years. Egyptians consumed this fruit at least 6,000 years ago. The round, ripe, sweet grape, were used to treat arrange of health problems including cancer, cholera, small pox, nausea, eye infection& kidney& liver diseases (1). The word currant is derived from the ancient Greek city, Corinth, and was first used to describe small dried grapes from that region (2). These grapes are know referred to and commercially sold as Zant currants. Black currant has another common names including, European black currant, Quincy berries, Kurokarin, grosellera Negro (spinach name), (raisins), Corans (English) Cassissier in French (3). Aside from high content of vitamin C, the black currant contain variety of different photochemical possessing antioxidant and free radical scavenging called flavonoids .including Quercetin, Myricetin ,and Kaempherol (4,5). And at least 15 different phenolic compound including onthocyanins and proanthocyanidin (4, 6, 7, 8). Resveratol is another grapes healthful compounds which are related to procyanidins, were found mainly in
the skin of grapes, reveratol has gained much popularity as an antioxidant supplement (9). Today, health care professionals use standardized extract of grape seed (fresh and skin) to treat range of health problem related to free radical damage, including age related disease, DNA damage, cancer, blood sugar regulating problems and heart disease (10). Grapes poanthocyanidin (PCOS) have been shown potent antioxidant effects that significantly inhibit lipid peroxidation of polyunsaturated fatty acid in animals & in vitro studies (1, 11). Polyphenol in different grapes species potentially inhibited reactive oxygen species activities implicated in microvascular injury (12). Black currant concentrate prepared from black currant juice with high polyphenolic compound enhances synthesis of NO with subsequent induction of endothelium dependent vasorelaxation in rat aorta (13). Although grape seed fruit has been suggested for improving diseased condition, black currant has gained little attention. Further research is needed in this area before strong recommendations can be made. Accordingly the hypothesis that aqueous extract of black currant concentrate (Vitis vinifera.L) might affect several measures of vascular health was tested in rats exposed experimentally to oxidative stress by 0.5% H2O2 in drinking water. It also aimed at comparing the prophylactic effect of the black currant concentrate with that of vit E.

Material and Methods

Forty (40) male Albino rats were randomly divided into four groups (10 rat/group) and were treated daily for six weeks as follows: 1-Group I: Rats of this group were received 1ml of sun flower oil daily by oral intubations using gavage needle and served as control group.

2- Group II: Animal of this group were subjected to ad libitum supply of drinking water containing 0.5% H2O2.

3- Group III: The rats of this group were administered daily 400 IU \kg body weight of vitamin E diluting in sun flower oil using gavage needle (14) plus 0.5% H2O2 in drinking water.

4- Group IV: animal of this group were intubated daily 60mg/kg body weight of Crude aqueous extract of black currant concentrate plus 0.5% H2O2 in drinking water.

Fasting blood samples were collected at zero, 21, 42 days of experiments Where blood, plasma & serum were prepared as mentioned previously. Blood samples were used immediately for platelet count (15), while plasma samples were used for measuring prothrombin time (using standard assay (prothrombin time kit) & and serum was used for measurements of lipid profile including serum triacylglycerol (TAG), Total cholesterol (TC), High density Lipoprotein cholesterol (HDL-C)(Enzymatically ,Bicon chemical Kits), Low density lipoprotein cholesterol (LDL-C) and Very low density lipoprotein cholesterol (VLDL-C)
cholesterol (VLDL-C) (16). Statistical analysis of data was performed on the basis of two way analysis of variance (ANOVA) using significant level of (P<0.05). Specific group Differences were determined using least significant differences LSD (17).

Result

Statistical differences were absent (P> 0.05) between groups during the pretreated period, however, administration 0.5% H2O2 in drinking water alone (group GΠ) or in combination with vitamin E (group GΙΙΙ) or with Black currant concentrate (group GΙV) caused significant decrease (P< 0.05) in PT after 21 days of treatment comparing to the control (table 1). Within the time. Significant reduction (P<0.05) in mean value of PT were observed after exposure to H2O2 alone (group GΠ) or in combination with vitamin E (group ΙΙΙ) comparing to the pretreated period. While oral intubations of black currant concentrate in addition to 0.5% H2O2 in drinking water caused significant increment (P<0.05) in PT value (20.45 ± 1.25) after 42 days of treatment comparing to the pretreated period (17.14 ± 0.30).

While there were non significant differences (p>0.05) in total numbers of platelet (platelet/mm3) between experimental groups in the pretreated period (table 2),

Tables 3, 4, 5, 6, 7, illustrated the mean value of TC, TAG, HDL-C, LDL-C and VLDL-C concentration in serum of control and three treated groups along the experimental period. Table(3) showed a general trend for the TC value to increase in 0.5% H2O2 treated groups as compared to control group & another two treated groups (GΙΙΙ, and GΙV). This increment reach stastical significance (p<0.05) at the day 21 and 42 of the experiment. Besides oral intubations of black currant concentrate concurrently with H2O2 in drinking water significantly suppressed (p<0.05) the elevated TC concentration at days 42 of experiment (85.67 ± 6.2) compared to the pretreated period.

The result also showed that exposure of animals to 0.5% H2O2 in drinking water significantly increased (p<0.05) the mean of value of TAG concentration of day 42 (83.37 ± 6.8) of the experiment comparing to the control (68.02 ±2.93) and GΙΙΙ (63.37 ± 3.37) and GΙV (62.52 ± 3.02) treated groups. It appears that black currant concentrate and vitamin E reduced the elevated TAG concentration caused by H2O2 exposure.(table) 7. A significant increase (p<0.05) in mean value of serum HDL-C concentration were detected at days 21 & 42 in GΙV (black currant group) with a mean value of (43.19 ± 4.41) and (47.44 ± 2.09) for day 21 & 42 respectively and at day 42 in GΙΙΙ (42.82 ± 2.28) comparing to H2O2 treated group. However, there is clear decrease (p<0.05) in serum HDL-C concentration in GΠ (30.69± 1.46)
comparing to control group (35.89 ± 1.8) at the end of experiment. (table 5). Moreover increasing the time of intubation of black currant had positive effect on HDL-C concentration.

It seems that vitamin E intubations concurrently with H2O2 normalized LDL-C value with that control at day 21 (75.50 ± 5.12) & the value reach below that of control at the end of experiment. (63.26 ± 2.8) compared to the pretreated period (75.23 ± 5.21).

Beside, oral intubations of black currant concentrate (GIV) Significantly suppressed (p<0.05) the mean value of LDL-C at the day 21 & 42 of treatment compared to H2O2 treated group , the highest reduction in LDL-C concentration were recorded at day 42 of treatment with mean value of (50.73 ± 7.87) table (6).

The mean value of serum VLDL-C concentration in different treated and control groups were clarified in table (7). The cholesterol concentration in VLDL increased significantly (p<0.05) after exposure to H2O2 comparing to control and GIII & GIV treated group. Such increment was observed at the end of experiment (day 42). On the other hand, oral intubations of vitamin E or black currant concentrate in combination with H2O2 caused significant depression (p<0.05) in mean value of serum VLDL-C concentration compared to H2O2 treated groups table (7).
Table (1): Effect of black currant concentrate (*Vitis vinifera* L.) and vitamin E on prothrombin time (second) in H2O2 treated rats.

Values are expressed as Means ± SE, n = 10 / group

<table>
<thead>
<tr>
<th>Group Time days</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treated period</td>
<td>17.37 ± 0.5 A a</td>
<td>17.47 ± 0.40 A a</td>
<td>17.58 ± 0.45 A a</td>
<td>17.14 ± 0.30 A a</td>
</tr>
<tr>
<td>21 days</td>
<td>18.02 ± 0.4 A a</td>
<td>15.52 ± 0.86 B b</td>
<td>13.76 ± 1.51 C b</td>
<td>14.7 ± 1.43 B b</td>
</tr>
<tr>
<td>42 days</td>
<td>18.32 ± 1.04 A a</td>
<td>10.20 ± 0.56 B C</td>
<td>15.83 ± 1.02 C c</td>
<td>20 ± 1.25 D c</td>
</tr>
</tbody>
</table>

GI= considered as control group
GII= rats received 0.5% of H2O2 in drinking water
GIII= rats received (400 IU/Kg/day) of vitamin E plus 0.5% H2O2 in drinking water
GIV=rats received (60mg/kg B.W) of black currant concentrate plus 0.5% H2O2 in drinking water.

Capital letters denote between groups differences, p<0.05 vs. control.
Small letters denote within group differences, p<0.05 vs. pretreated period.
Table (2): Effect of black currant concentrates (*Vitis vinifera, L*) And vitamin E on platelet count (platelet/mm3) in H2O2 treated rats

Values are expressed as Means ± SE, n = 10 / group

<table>
<thead>
<tr>
<th>Group</th>
<th>Time</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-treated</td>
<td>316000 ±48352</td>
<td>315833 ±46658.7</td>
<td>347500 ±42994.5</td>
<td>358600 ±36452.9</td>
</tr>
<tr>
<td></td>
<td>period</td>
<td>A a</td>
<td>A a</td>
<td>A a</td>
<td>A a</td>
</tr>
<tr>
<td>21 days</td>
<td>301066 ±10506</td>
<td>427833 ±40672</td>
<td>350833 ±42977.9</td>
<td>360333 ±35497.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A a</td>
<td>B b</td>
<td>A a</td>
<td>A a</td>
<td></td>
</tr>
<tr>
<td>42 days</td>
<td>324035 ±17490</td>
<td>568666 ±30967</td>
<td>473000 ±20373.3</td>
<td>469333 ±194966</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A a</td>
<td>B c</td>
<td>C b</td>
<td>C b</td>
<td></td>
</tr>
</tbody>
</table>

GI= considered as control group
GII= rats received 0.5% of H2O2 in drinking water,
GIII= rats received (400 IU/Kg/day) of vitamin E plus 0.5% H2O2 in drinking water.
GIV= rats received (60mg/kg B.W) of black currant concentrate plus 0.5% H2O2 in drinking water.
Capital letters denote between groups differences, p<0.05 vs. control.
Small letters denote within group differences, p<0.05 vs. pretreated period.
Table (3) Effect of black currant concentrate (*Vitis Vinifera, L*) and vitamin E on serum total cholesterol (TC) concentration rats.

Values are expressed as Means ± SE, n = 10 / group

<table>
<thead>
<tr>
<th>Group Time days</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treated period</td>
<td>97.32 ± 4 A a</td>
<td>96.68 ± 3.7 A a</td>
<td>97.99 ± 5.8 A a</td>
<td>98.93 ± 4 A a</td>
</tr>
<tr>
<td>21 days</td>
<td>98.40 ± 4.6 A a</td>
<td>114.4 ± 3.91 B b</td>
<td>99.13 ± 5.7 A a</td>
<td>92.81 ± 5.6 A a</td>
</tr>
<tr>
<td>42 days</td>
<td>95.71 ± 3.5 A a</td>
<td>117.97 ± 4.24 B b</td>
<td>93.42 ± 3.8 A a</td>
<td>85.67 ± 6.2 A b</td>
</tr>
</tbody>
</table>

GI= considered as control group
GII= rats received 0.5% of H2O2 in drinking water
GIII= rats received (400 IU/Kg/day) of vitamin E plus 0.5% H2O2 in drinking water.
GIV=rats received (60mg/kg B.W) of black currant concentrate plus 0.5% H2O2 in drinking water.

Capital letters denote between groups differences, p<0.05 vs. control.
Small letters denote within group differences, p<0.05 vs. pretreated period.
Table (4): Effect of black currant concentrate (*Vitis vinifera*, L) and vitamin E on serum triacylglycerol (TAG) concentration. Values are expressed as Means ± SE, n = 10 / group

<table>
<thead>
<tr>
<th>Group</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time days</td>
<td>63.96 ± 2.03</td>
<td>64.24 ± 1.28</td>
<td>65.04 ± 4.09</td>
<td>61.98 ± 4.07</td>
</tr>
<tr>
<td></td>
<td>A a</td>
<td>A a</td>
<td>A a</td>
<td>A a</td>
</tr>
<tr>
<td>Pre-treated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>period</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 days</td>
<td>66.48 ± 2.54</td>
<td>68.72 ± 4.09</td>
<td>67.34 ± 4.15</td>
<td>64.61 ± 4.07</td>
</tr>
<tr>
<td></td>
<td>A a</td>
<td>A a</td>
<td>A a</td>
<td>A a</td>
</tr>
<tr>
<td>42 days</td>
<td>68.02 ± 2.93</td>
<td>83.15 ± 6.8</td>
<td>63.37 ± 3.37</td>
<td>62.52 ± 3.02</td>
</tr>
<tr>
<td></td>
<td>A a</td>
<td>B b</td>
<td>A a</td>
<td>A a</td>
</tr>
</tbody>
</table>

GI= considered as control group
GII= rats received 0.5% of H2O2 in drinking water
GIII= rats received (400 IU/Kg/day) of vitamin E plus 0.5% H2O2 in drinking water.
GIV= rats received (60mg/kg B.W) of black currant concentrate plus 0.5% H2O2 in drinking water.
Capital letters denote between groups differences, p<0.05 vs. control.
Small letters denote within group differences, p<0.05 vs. pretreated period.
Table (5) Effect of black currant concentrate (*Vitis vinifera*, L) and vitamin E on serum high density lipoprotein –cholesterol concentration in H2O2 treated rats.

Values are expressed as Means ± SE, n = 10 / group

<table>
<thead>
<tr>
<th>Group Time</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treatment Period</td>
<td>31.99 ± 0.97 A a</td>
<td>31.86 ± 0.92 A a</td>
<td>35.76 ± 1.95 A a</td>
<td>35.91 ± 1.29 A a</td>
</tr>
<tr>
<td>21 days</td>
<td>35.69 ± 0.74 A a</td>
<td>33.25 ± 2.12 A a</td>
<td>36.92 ± 2.45 A a</td>
<td>43.19 ± 4.41 B b</td>
</tr>
<tr>
<td>42 days</td>
<td>35.89 ± 1.8 A a</td>
<td>30.69 ± 1.46 B a</td>
<td>42.82 ± 2.28 C b</td>
<td>47.44 ± 2.09 D c</td>
</tr>
</tbody>
</table>

GI= considered as control group
GΠ= rats received 0.5% of H2O2 in drinking water
GШ= rats received (400 IU/Kg/day) of vitamin E plus 0.5% H2O2 in drinking water.
GIV= rats received (60mg/kg B.W) of black currant concentrate plus 0.5% H2O2 in drinking water.

Capital letters denote between groups differences, p<0.05 vs. control.
Small letters denote within group differences, p<0.05 vs. pretreated period.
Table (6) Effect of black currant concentrate (Vitis Vinfera.L) and vitamin E on serum low density lipoprotein cholesterol (LDL-C) concentration in H2O2 treated rats.

Values are expressed as Means ± SE, n = 10 / group

<table>
<thead>
<tr>
<th>Group</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-treated Period</td>
<td>21 days</td>
<td>42days</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77.99 ± 3.7 A a</td>
<td>76.97 ± 6.07 A a</td>
<td>76.10 ± 4.25 A a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77.68 ± 3.35 A a</td>
<td>94.89 ± 4.46 B b</td>
<td>103.91 ± 5.27 B c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75.23 ± 5.21 A a</td>
<td>75.50 ± 5.12 A a</td>
<td>63.26 ± 2.80 C b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75.41 ± 4.02 A a</td>
<td>62.45 ± 4.10 C b</td>
<td>50.73 ± 7.87 D c</td>
<td></td>
</tr>
</tbody>
</table>

GI= considered as control group
GII= rats received 0.5% of H2O2 in drinking water
GIII= rats received (400 IU/Kg/day) of vitamin E plus 0.5% H2O2 in drinking water.
GIV=rats received (60mg/kg B.W) of black currant concentrate plus 0.5% H2O2 in drinking water.

Capital letters denote between groups differences, p<0.05 vs. control.
Small letters denote within group differences, p<0.05 vs. pretreated period.
Table (7) Effect of black currant concentrate (*Vitis Vinifera* L) and vitamin E on serum very low density lipoprotein cholesterol (VLDL-C) concentration in H2O2 treated rats. Values are expressed as Means ± SE, n = 10 / group

<table>
<thead>
<tr>
<th>Group</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-treated Period</td>
<td>12.79 ± 0.40 A a</td>
<td>12.84 ± 0.36 A a</td>
<td>13 ± 0.81 A a</td>
<td>12.39 ± 0.81 A a</td>
</tr>
<tr>
<td></td>
<td>13.69 ± 0.74 A a</td>
<td>13.74 ± 0.85 A a</td>
<td>13.46 ± 0.82 A a</td>
<td>12.83 ± 0.82 A a</td>
</tr>
<tr>
<td>21 days</td>
<td>14.23 ± 0.95 A a</td>
<td>16.62 ± 1.36 B b</td>
<td>12.66 ± 0.67 A a</td>
<td>12.50 ± 0.60 A a</td>
</tr>
</tbody>
</table>

GI= considered as control group
GII= rats received 0.5% of H2O2 in drinking water
GIII= rats received (400 IU/Kg/day) of vitamin E plus 0.5% H2O2 in drinking water.
GIV=rats received (60mg/kg B.W) of black currant concentrate plus 0.5% H2O2 in drinking water.

Capital letters denote between groups differences, p<0.05 vs. control.
Small letters denote within group differences, p<0.05 vs. pretreated period.

Histological Finding

The histological structure of heart and aorta of untreated rats (GI) were shown in figures (1, 2). Oral intubation of 0.5% H2O2 alone (GII) or in combination with vitamin E (GIII) produced atherosclerotic lesions however, the pathological changes were sever in H2O2 treated group. Fatty changes in cardiac cells with fatty (inflammatory) cells infiltration between the muscle fiber were observed in cardiac muscle of H2O2 treated groups (fig 3 & 5).

Thickness of intima in the pulmonary artery with collagen proliferation & infiltration of foamy cells (atheromatous lesions) in the subintimal layers causing narrowing of blood vessels were observed in figure (4) related to section in pulmonary artery of H2O2 treated rats. Irregular intima to which
inflammatory cells were attached and focal foamy cells in the subintimal layer were shown in the aorta of H2O2 treated group (fig 6). The same pathological changes were observed in the aorta of H2O2+Vt E (GШ) treated groups (fig 9). Histological changes in the heart of same group pointed to the presence of fatty changes in the muscle fiber characterized by clear round vacuoles and oedematous muscle fiber as well as sever inflammatory cell in the epicardium (figs 7 & 8).

Oral intubation of 60mg /Kg B.W.of black currant concentrate concurrently with 0.5% H2O2 caused complete regression of lesion in the muscle fiber and heart & walls of pulmonary artery (fig 10) as well as pathological changes of aorta (fig 11).

Figure (1) Histological section in heart of control group & layers of pulmonary Artery (→) intima, (↔) muscularis,(→) adventia H & E 40X.
Figure (2) Histological section in layers of Aorta in control group
(←→) intima, (←→) muscularis, (←→) adventitia. & E

Figure (3) Histological section in heart of H2O2 treated rats. Note: excessive thickness of intima due to proliferation collagen fiber
(↑) & present foamy cells (←→) H & E 40X.
Figure (4) Histological section of pulmonary artery of H2O2 treated rats. Dense thickness of intima in muscular layer of blood vessel lead to narrowing of its (→), & clear rounded vacuole in cytoplasm of cell (→) H & E 40X.

Figure (5) Histological section in heart of H2O2 treated rats. Note: inflammatory cell infiltration in epicardium (→) H & E 40X.
Figure (6) Histological section in Aorta of H2O2 treated rats note: irregular of intima (→), with inflammatory cells attachment to it’s (→) & focal foamy cell in sub intimae (→). H & E 40X.

Figure (7) Histological section of heart treated with H2O2 & vit E. Note: fatty change in muscles characterized by clear round vacuole with edematous muscles fiber (→) H & E 40X.
Figure (8) Histological section of heart treated with H2O2 & vit E. Note: severe inflammatory cell in epicardium and muscle fiber (→) H & E 40X.

Figure (9) Histological section of aorta treated with H2O2 & vit E. Note: Irregular intima (→) & inflammatory cell attach to it (→), foamy cell with sub intima (→) H & E 40X.
Figure (10) Histological section of heart treated H₂O₂ Plus black currant complete concentrate regression of lesion in the muscle fiber & wall of pulmonary artery H.E 40X

Figure (11) Histological section of aorta treated H₂O₂ Plus black currant concentrate complete regression of lesion in layer of its. H.E 40X.
Discussion

The current study demonstrated that oral intubation of 0.5% H2O2 in drinking water for six weeks to adult male rats caused significant damage to cardiovascular system. The damaging effects of hydrogen peroxide on cardiovascular system were observed in all diagnostic markers examined in relation to 1- Prothrombin time, 2- platelet count, 3- serum lipid profile, 4- histological section of hearts and aorta. Beside oral intubation of black currant concentrate or vitamin E concurrently with H2O2 exerted significant cardioprotection against H2O2 induced oxidative damage in all end points examined.

Enhancement of lipid peroxidation & analysis of lipid membrane on platelet surface with enhancement of Coagulation factors (Thrombin and Thromboxane A2) by H2O2 exposure has been reported (18). On other hand H2O2 exposure enhanced transferring of fibrinogen to fibrin, thrombocytosis with subsequent suppression of prothrombin time (19, 20).

The result of the present study revealed a case of hypercholesterolemia following H2O2 intubation which may be considered in the resultant thrombocytosis. Beside oxidized LDL are more reactive than native LDL in this issue (21). So we can postulate that oxidation of LDL by H2O2 contribute greatly. Vitamin E has been recorded to be known inhibitor of platelet aggregation and these effects appears to be dose dependent (22). Supplementation of antioxidant; vitamins including vitamin E caused inhibition of platelet activation (23). And this effect might be due to its antioxidant and cardioprotective action (24). Our results demonstrated that oral intubation of aqueous extract of black currant concentrate significantly depressed thrombocyte number with elevation of prothrombin time (tables 1, 2). Black currant concentrate have been shown to possess antioxidant activity by way of H2O2 scavenging capacity, lowering lipid peroxidation with subsequent correction the depressed prothrombin time & thrombocytosis induced by H2O2 (25). Both vitamin C concentration and total phenolic content of black currant strongly correlates with its antiplatelet effect (26, 27).

Partial deficiency of lipoprotein lipase (the key enzyme determining the removal rate of TG from plasma), associated with increased output of lipoprotein from the liver may contribute to the elevation of serum TG level in H2O2 treated group (28). The present study showed that oral intubation of vitamin E plus H2O2 in drinking water caused positive changes in serum lipid profile through significant decline in the mean value of serum TC, TAG, LDL-C and VLDL-C concentration & elevation in serum HDL-C concentration in comparison to control group (tables 3, 4, 5, 6, 7). This result insures the hypolipidemmic and the corresponding cardioprotective effect of vitamin E. A significant body of literature correlates dietary vitamin E supplementation with regression of cardiovascular incidence.
and mortality (29,30). The cardioprotective effects of vitamin E are attributed to its antioxidant properties. Vitamin E is able to extinguish single oxygen species as well as to terminate free radical chain reactions (31).

Oral administration of black currant concentrate to adult rat for six weeks exerted hypocholesterolemic effect (depression of serum TC, LDL-C concentration) and hypotriglyceridemic effect. Mean while serum HDL-C concentration was significantly increased following black currant intubation (tables 3, 4, 5, 6). These results were in agreement with the result of other workers in which different currant species, experimental duration and different age were used in healthy and hemodialysis patients (32,33). As reviewed by Particia Castilla and his colleagues (33), supplementation of red grape juice causes significant decline in LDL-C & apolipoprotein-B concentration with elevation of HDL-C & Apolipoprotein –A concentration in hemodilysis patient subject. Several active ingredients in black currant (seed, skin& concentrate and juices) may attributed to the hypolipidemic effect of the currant: 1- First at all black currant (seed ,skin and concentrated juice) are regarded as food soures of phytochemicals such as catechin, epicatechin, the known hypolipidemic effect of the currant(34), 2-Besides antioxidant compound present in black currant (PCO) might have ability to directly (scavenge OH*) protect LDL from oxidation and reduces serum cholesterol level(25,35) and improving the lipoprotein profile through decreasing the LDL-C concentration (33), 3-Another investigator postulated that vitamin C content could be considered the major contributor to the antioxidant capacity & the corresponding hypolipidemic effect of black currant (36). (Figures 3, 4, 5, 6, 7, 8, 9), indicating occurrence of oxidative stress by H2O2 leading to athermatous lesions. The functional role of oxidative stress induced by free radicals including (Hydrogen peroxide) in endothelial dysfunction and the resultant atheroma was reported (37, 38). The histological examination of aortic , pulmonary and cardiac muscle of rat received aqueous extract of black currant concentrate revealed complete regression of cardiac damage and athermatous lesion caused by H2O2(Figures 10,11) . Research also suggested that antioxidant found in grape juice may act to promote healthy cardiovascular function through protection of LDL from risk of free radical which leads to minimize interaction of ROS & bad cholesterol, help to keep arteries clear and reduce stickness of blood (39). Besides, reversterol posses cardiomyocyte protection against oxidative stress lessens occurance of foamy cells & prevent blood cell adherence). Black currant has been repoted to contain considerable amount of vitamin C and reverosterol which may contribute to it antiatherosclerotic effect. (40). On conclusion, it appears that different antioxidant & active ingredients of black currant contribute to it cardioprotection effect. And it seems that inspite of antiatheroscleratic effect of vitamin E (29,41). Vitamin E failed to counteract the damaging effect of
H2O2. This may be attributed to differences in duration of the experiment and the prolonged action of H2O2.

References

38- Yasunori Kokusho; Tatsuya Komaru; Satoru Takeda; Katsuaki Takahashi; Ryoji Koshida; Kunio Shirato; and Hiroaki Shimokawa. (2007). Hydrogen Peroxide Derived From Beating Heart Mediates Coronary Microvascular Dilation During Tachycardia Arteriosclerosis, Thrombosis, and Vascular Biology; 27:1057.
