A study of Serum Steroid Hormones Concentrations Of Pregnant Cows.

AL-Anbaky , K. I. H.

Summary
The objective of present work is to estimated peripheral blood serum concentrations of pregnancy hormones, oestradiol , progesterone and testosterone , in cows . For this purpose 24 Frezain- Holstein cows at different stages of pregnancy the blood samples were taken from jugular veins. The serum were separated and frozen at – 20 c until analysis. The serum hormones were measured by a specific ELISA technique (ELISA Linear Multi Reader). The data were represented Mean ± S.D. Progesterone was high during pregnancy reaching a maximum of 91.94 ± 26.09 ng/ml during last thirds (6-8 months) of pregnancy , but was below 9.12 ± 2.41 ng/ml for several months during the pregnancy. Oestradiol levels varied from 9.04 ± 2.89 pg/ml in the first thirds of pregnancy to 282.6 ± 48.514 pg/ml during the last month of gestation. While testosterone hormone level was low 0.32 ± 0.12 ng /ml during pregnancy. The result indicated that the major sources of hormones appeared to be the Ovary (corpus luteum) and the uterus (placenta). The ovarian contribution was greater during the first – thirds of pregnancy than later, whereas that made by the placenta was higher during the last thirds of pregnancy.

Introduction
The cow occupies an intermediate position between the sheep and goat in term of the mechanism by which the progesterone requirements of pregnancy. In intact cows during the pregnancy the progesterone concentration in ovian is 50- 100 time greater than that in the uterine or in the jugular vein (1+2). In pregnant cow excretes increasing amounts of estradiol -17 alpha, estrone and estradiol 17 beta and placenta appears to be the major site of estrogen production (3). (4) reported that testosterone is converted to estrogen in the basement membrane of theca cells in the cows. The role of testosterone in female genital organ remains controversial and poorly understood (5). Present work is design to estimate the serum level of progesterone, testosterone and estradiol at different stages of pregnant cows.

Materials and methods
Twenty four (24) adult Friesian-Holstein cows of various stages of gestation were used in present work. The animals were born in Iraq and had at least one birth and naturally inseminated. The cows were housed indoors under natural lighting and fed ad libitum to requirement. Blood samples were taken from jugular vein and centrifuged in EDTA tubes (Ethylene diamine tertra acetic acid). The serum was aliquoted and stored at -20°C until assay. The progesterone, estradiol and testosterone hormones were measured by highly specific enzyme-linked immunosorbent assay (ELISA) using (ELISA) kits (IBL-Hamburg, Com) and (ELISA Linear multi reader). All the measurement were present in ng (nanogram) for progesterone, testosterone levels; and pg (pictogram) for estradiol levels. Statistical analysis was calculated by Student t-test differences between values were considered significant at p<0.05 and highly significant at p<0.01 (6).

Results

Steroid hormones levels during different stages of pregnancy are present in Table (Table 1).

Table (1): Serum progesterone ng/ml, Testosterone ng/ml and Estrogen pg/ml Concentration During Pregnancy in cow. M±S.D. n=36

<table>
<thead>
<tr>
<th>Months in to pregnancy</th>
<th>Estradiol</th>
<th>Testosterone</th>
<th>Progesterone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 3 months</td>
<td>9.2±2.89a</td>
<td>1.673±0.707a</td>
<td></td>
</tr>
<tr>
<td>3-5 months</td>
<td>48.2±10.685b</td>
<td>0.32±0.117a</td>
<td>9.117±2.411b</td>
</tr>
<tr>
<td>5-8 months</td>
<td>208.92±42.62c</td>
<td>91.94±26.090c</td>
<td></td>
</tr>
<tr>
<td>8 end</td>
<td>282.6±48.514d</td>
<td>0.541±0.304b</td>
<td>1.26±713aa</td>
</tr>
</tbody>
</table>

Different letter mean significant at <p<0.05, p<0.01 or p<0.001.

The hormones assay were pooled on a monthly basis. The table1 give progesterone, estrogen and testosterone hormones results in 24 adults Friesian – Holstein cows which were showing psychic estrous and subsequently became pregnant. Table 1. revealed that the serum progesterone levels were showed significantly steadily increased during pregnancy and declined sharply in the last few days before birth to reach the level almost similar that of the first trimester 1.26±0.713 ng/ml. Blood estrogen concentration increasing solely to an average of 9±2.89 pg/ml at first 3 months prepuram and then more steeply to 208±42.62 pg/ml P<0.01 significantly from first to second and third trimester to reach the highest concentrations during the last month of gestation. The Highest individual value was 336 pg/ml (206-336 ng/ml). peripheral serum testosterone hormone slightly increase during pregnancy (Table 1).

Discussion

Progesterone level is used to select pregnant cow. The rationale for this test is that females are pregnant Britt, (7) reported luteum persist and progesterone concentrations remain high. The plasma progesterone concentrations, laboratory diagnoses of pregnancy, and results of pregnancy determination based on non-return to estrus and on rectal palpation (8). Cows with a plasma progesterone concentration exceeding 2.5 ng/ml at a single determination between days 19 and 22 were classed as pregnant. The accuracy of a laboratory diagnosis of pregnancy was 85% when compared to the results obtained by rectal palpation 6 to 7 weeks after insemination (9). The plasma progesterone value for pregnant cows were similar to those previously reported by 10 11 And did not differ from found in cycling cows during the height of the luteal phase (day10 to 17, (9), the data reported here is with agreement with finding of Short2007 which reported that blood progesterone increased from 32-256 days of pregnancy and decreased rapidly just before calving.
A study of Serum Steroid Hormones Concentrations Of Pregnant Cows.

Estrone sulfate, conjugated astrogen, is the product of the fetal placental unit and has been used to diagnose pregnancy in ruminant (12). Increasing estrogen activity in near term supports the theory that parturition may be initiated by decreasing progesterone and increasing estrogen on assumption that uterine contractility rifles estrogen levels (13). Estrogen and testosterone accelerate blood flow to uterus (14) and testosterone not only the immediate precursors of estrogen during pregnancy (15). While, the role of androgen in female genital organ remain controversial and poorly understood (16).

References