The Linear Vibrational Behavior of Thick Plates Including the Effects of Shear and Rotary Inertia

Prof. Dr. Muhsin J. Jweeg
Nahrain University
College of Engineering
Email: muhsinjj@yahoo.com

Dr. Ahmdd A. Hussain
University of Technology
College of Engineering
ahmedhh@yahoo.com

Eng. Wisam Abed Al-Sada Kuleiwi
University of Technology
College of Engineering
wisamaa@yahoo.com

Abstract

In this work, a suggested analytical solution for static and dynamic analysis of (fiber-reinforced) composite laminated thick plate is developed by using the single layer theory and first-order shear deformation theory (FSDT) theory. The dynamic analysis for equations of motion for those theories is presented and solved by using the modal analysis method of forced vibration. A computer program was built for this purpose for anti-symmetric cross-ply and angle-ply and simply supported thick laminated plate and the developed equations are solved by using (MATLAB V.7) program. The numerical solution by using finite-element technique is also adopted using (ANSYS V5.4) package, to compare the analytical results. Both above approaches use (FSDT) and include the effect of shear deformation and rotary inertia. The results are the deflection, stress in each layer and (through thickness) inter-laminar shear stress for thick laminated plates with different boundary conditions subjected to the static and dynamic loading conditions. The results presented show the effect of plate thickness-to-length ratio (h/a), aspect ratio (a/b), number of layers (N), the degree of orthotropy ratio (E₁/E₂), fiber orientation, boundary conditions, lamination scheme, and the effect of shear deformation and rotary inertia on the thick laminated plate.

Key Words:- Thick Plates, Composite Laminated Thick Plate, (FSDT) theory

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, b</td>
<td>Length dimensions of rectangular plate in x and y direction respectively.</td>
</tr>
<tr>
<td>A</td>
<td>Total cross section area of lamina.</td>
</tr>
<tr>
<td>E₁, E₂, E₃</td>
<td>Young's modulus for lamina in 1, 2 and 3 directions respectively.</td>
</tr>
<tr>
<td>G₁₂, G₁₃, G₂₃</td>
<td>Shear modulus for lamina in 12, 13 and 23 plane respectively.</td>
</tr>
<tr>
<td>h</td>
<td>Total plate thickness.</td>
</tr>
<tr>
<td>k₄, k₅</td>
<td>Transverse shear correction factors.</td>
</tr>
<tr>
<td>Mₓ, Mᵧ, Mₓᵧ</td>
<td>Normal and twisting moments per unit length.</td>
</tr>
<tr>
<td>N</td>
<td>Number of laminate's layer.</td>
</tr>
<tr>
<td>N₁</td>
<td>Number of terms in the expansion.</td>
</tr>
<tr>
<td>Nₓ, Nᵧ</td>
<td>Normal resultants and shear forces per unit length.</td>
</tr>
<tr>
<td>q(x,y)</td>
<td>General loading traction pressure subjected on plates.</td>
</tr>
<tr>
<td>Qₓ, Qᵧ</td>
<td>Shear forces in the normal faces to the x and y axis per unite length respectively.</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>u₁, u₂, u₃</td>
<td>Displacements in plates in x, y and z directions respectively</td>
</tr>
<tr>
<td>u, v, w</td>
<td>Displacements along the coordinate lines of a mid-plane on the xy-plane.</td>
</tr>
<tr>
<td>x, y, z</td>
<td>Rectangular coordinates.</td>
</tr>
<tr>
<td>Zₖ, Zₖ₋₁</td>
<td>Distance from plate middle surface to the lower and upper surface of kth layers plates respectively.</td>
</tr>
</tbody>
</table>
Extension, bending-extension (coupling) and bending stiffnesses elements respectively.

[f] Load vector.

[k] Laminated plate stiffness matrix.

[m] Laminated plate mass matrix.

$[\tilde{P}]$ Weighted modal matrix.

\tilde{Q}_p Generalized forces vector.

$[\tilde{Q}_{ij}]$ Transformed reduced stiffnesses.

$[\varepsilon]_{1,2,3}$ Strain vector in 1, 2 and 3 directions.

$[\varepsilon]_{x,y,z}$ Strain vector in x, y and z directions.

$[\sigma]_{1,2,3}$ Stress vector in 1, 2 and 3 directions.

Introduction

In several mechanical and civil engineering structures, such as automobiles, aircrafts, ships, fluid-storage tanks, bridges and building slabs fall into the category of plate–shell composed system. Composite materials are materials that are made from combined two or more material “a selected filler or reinforcing elements and compatible matrix binder” that have quite different properties, that when combined offer properties which are more desirable than the properties of the individual materials.

Thick composites plates are used also in a marine hull and minesweeper hull because thier low density, non-magnetic, good resistance to corrosion and marine fouling and good resistance to fatigue and stress corrosion cracking. So, studies involving the assessment of the transient analysis of thick laminated composite plates and the effect of transverse shear deformation and rotary inertia are receiving the attention of designers and researchers. Whitney and Sun [1] have developed a laminated plate theory which was applicable to fiber reinforced composite materials under impact loading. In addition to the usual bending and extensional motion, the theory also includes the first symmetric thickness shear and thickness stretch motions as well as the first anti-symmetric thickness shear mode.

Reddy [2] employed a shear flexible finite element to investigate the transient response of isotropic, orthotropic and layered anisotropic composite plates. Numerical convergence and stability of the element is established using Newmark's direct integration technique. Numerical results for deflections and stresses are presented for rectangular plates under various boundary conditions and loading. The parametric effects of the time step, finite element mesh, lamination scheme and orthotropy on the response are investigated.

Kant and Mlikarjuna [3] formulated a refined higher-order theory for free vibration analysis of unsymmetrical laminated multilayer plates. The theory accounts for parabolic of the transverse shear strain through the thickness of the plate and rotary inertia effects. A simple finite element formulation is presented and the nine-noded Lagrangian element is chosen with seven degrees-of-freedom per node. The adopted theory predicts the frequencies more accurately when compared with classical plate theories.

Yin [4] presented a variational method involving Lekhnitskii's stress functions is used to determine the inter-laminar stresses in a multilayered strip of laminate subjected to arbitrary combinations of axial extension, bending, and twisting loads. The stress functions in each layer are approximated by polynomial functions of the thickness coordinate.

Khrras et al [5] developed a finite strip method for the vibration and stability analyses of thick anisotropic laminated composite plates according to the higher–order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surface. In comparison with the finite strip method based on the first–order shear deformation theory, the present method gives improved results for every thick plate while using approximately the same number of degrees of freedom.

The main objective of the current work is to determine the linear behavior of thick laminated composite plates including the effect of transverse shear deformations and rotary inertia, under general loading condition static and dynamic. To achieve the above objectives a suggested analytical solution is developed for linear dynamic analysis of thick laminated composite plates under transient loading by using the theories of laminated plates, solved analytically by designed computer program, built using MATLAB V.7) program. In addition, a numerical solution for static and dynamic
Theoretical Investigation

Classical Laminated Plate Theory (CLPT)

The two-dimensional theory of extensional and flexural motions of heterogeneous an isotropic plates is deduced from the dynamical equations of three-dimensional elasticity:

\[
\begin{align*}
\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + F_x &= \rho \frac{\partial^2 U_x}{\partial t^2} \\
\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + F_y &= \rho \frac{\partial^2 U_y}{\partial t^2} \\
\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + F_z &= \rho \frac{\partial^2 U_z}{\partial t^2}
\end{align*}
\]

(1a) (1b) (1c)

where: \(\rho = \rho(x, y, z) \) is the material density.
Fi = is the body force in i-axis component.
These equations are converted to plate-stress equations by method of Yang, Norris and Stavsky theory; [6].

First-Order Shear Deformation Theory (FSDT)

The equations of motion for (FSDT) obtained in the same method are applied to obtain the general equations of motion for (CLPT); [6].

For (FSDT) the following equations of motion are:

Second and Higher Order Shear Deformation (ESL.) Laminated Plate Theories

The second and higher shear deformation theories use higher order polynomials (quadratic or cubic) in the expansion of the displacement components through the thickness of the laminate, i.e., (a parabolic variation of the transverse shear strains throughout the thickness). The more important theory that must be treated with it, is the general third order shear deformation laminated plate theory (GTOT).

General Third-Order Theory of Reddy (GTTR)

In this section, the displacement field for (GTTR) will be derived. This theory is a special case from the (GTOT), which was developed by Reddy, who made it imply the following conditions; [7 and 8].

Putting the above conditions in equation (3) leads to the following displacement field:
Inter-Laminar (through-thickness) Stresses

In the laminated plates, no account is taken of inter-laminar stresses such as τ_{xz}, τ_{yz} and τ_{x}. Inter-laminar stresses are one of the failure mechanisms uniquely characteristic of composite materials and a source of damage in stressed laminates.

The inter-laminar shear stresses are determined from:

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{xy}}{\partial z} = \rho \frac{\partial^2 u_z}{\partial t^2}$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} = \rho \frac{\partial^2 u_x}{\partial t^2}$$

Classical Laminated Plates Theory (CLPT)

In classical laminated plates theory only the stresses in the plane of laminate, σ_{xx}, σ_{yy} and σ_{xy} are considered, because no account is taken of inter-laminar (through-thickness) stresses such as inter-laminar shear stresses τ_{xz} and τ_{yz}, that is, a plane stress state is assumed.

First-Order Shear Deformation Laminated Theory (FSDT)

In the first-order shear deformation laminated theory, the inter-laminar shear stresses τ_{xz} and τ_{yz} are calculated in the same way in the (CLPT).

The Dynamic Response

The equations of motion of a multi-degree of freedom system under external forces are given by:

$$[M] \dddot{\delta} + [C] \ddot{\delta} + [K] \dot{\delta} = [F]$$

To solve equation (6) by modal analysis, it is necessary first to solve the eigen-value problem:

$$\omega^2 [M] \delta = [K] \delta$$

And find the natural frequencies ω_1, ω_2... ω_n and the corresponding normal weighted modal .

Computer Program

The sequence in Fig. (1) shows the flow chart for computer program for dynamic analysis of composite laminated plate. The program is built for solving the developed by using first order shear deformation theory (FSDT), for anti-symmetric (cross-play) and (angle-ply) simply supported laminated plates subjected to uniformly, sinusoidal distribution for pulse and ramp dynamic loading.

The Input of Program
1. The properties of composite laminated plate in (1,2,3) directions of lamina (E_1, E_2, E_3, G_{12}, G_{23}, G_{13}, ν_{12}, ν_{23}, ν_{13}, and ρ).
2. The geometry or (the dimensions) of thick composite laminated plate, length of plate (a), width of plate (b) and the thickness of plate (h).
3. The data of load (pressure) (q_0 and t_0).

The Output of Program are
1. The maximum deflection (Central deflection at x = a/2 and y = b/2) with time.
2. The stresses in each layer of laminate with time.
Input the properties of plates
Input the dimensions of plates
Input loading conditions \((t_0) \) and \((q_0) \)
Calculate stress-strain relation for Lamina, \([Q]\) matrix

Ply Type

\(\theta_1=45^\circ, \theta_2=-45^\circ \)

Solve for Angle - ply Laminated plate

\(\theta_1=0^\circ, \theta_2=90^\circ \)

Solve for Cross - ply Laminated plate

Calculate stress-strain relation of \([Q]\)

Calculate [K] and [M] matrices

Calculate the natural frequencies

Ply Type

Angle - Ply

Cross - Ply

Sinusoidal
\(E_{x,y} = E_0 \)

Uniform
\(E_{x,y} = \frac{16}{\pi^2} E_0 \)
Vibrational Behavior of Thick Plates

$$f(t)$$

Ramp loading

Pulse loading

$$t = 0, t_{on}$$

Calculate the displacement

Write the displacement

$$i = 1, N.$$

Calculate $$Z_i$$ at the middle

Calculate stress field for plates

Write the stress Field of plates

End

Fig. (1) Flow Chart of the Developed Computer Program
Application of ANSYS Program to Composite Materials
The ANSYS program allows to model composite materials by using specialized elements called layered elements. Once the model is built using these elements, any structural analysis can be done (including nonlinearities can be achieved such as large deflection and stress stiffening). (SHELL91 16-Layer structural shell) shown in Fig. (2) is used for application of laminated plates, SHELL91 which may be used for layered applications of a structural shell model or for modeling thick sandwich structures.

Verification Case Study
The case study discussed here is comparison between the work of Reddy [2] of a numerical solution with the present analytical solution and numerical solution for a thick laminated plate. The case study discussed here is comparison between the work of Reddy [2] of a numerical solution with the present analytical solution and numerical solution for a thick laminated plate. * Both solutions use two-layer (0/90) cross-ply square laminated plate of simply supported boundary conditions at edges as shown in Fig. (3) below.
* Employing the given geometry and material properties and adapted the first order shear deformation theory (FSDT) with mesh size (4x4) element

Fig. (2) SHELL91 16-Layer, Structural Shell.
The two layer cross-ply laminated plate is subjected to sinusoidal pulse loading:

$$F(t) = Q(x, y, t) = \overline{q}(x, y) f(t)$$

where:

$$\overline{q}(x, y) = \frac{4}{ab} \int_{a}^{b} \int_{0}^{h} q(x, y) dx dy$$

$$q(x, y) = \frac{q_0 \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}}{ab}$$

$$q_0 = 100 \frac{KN}{m^2}$$

I. The Dimension of Plate

$$a = b = 25 \text{ cm} = 0.25 \text{ m}$$

$$a) \quad h = 5cm = 0.05m \Rightarrow \frac{a}{h} = 5$$

$$b) \quad h = 1cm = 0.01m \Rightarrow \frac{a}{h} = 25$$

I. The Properties of Plate

$$E_2 = E_3 = 21 \text{ GPa}$$

$$\frac{E_1}{E_2} = 25$$

$$G_{12} = G_{13} = G_{23} = 0.5 E_2$$

$$\rho = 800 \text{ kg/m}^3$$

$$\nu_{12} = \nu_{13} = \nu_{23} = 0.25$$

Results and Discussions

Fig. (4) shows the effect of aspect ratio (a/b) on the central deflection of plate with different fiber orientations and boundary conditions. From the figure, the central deflection increases with increasing of the aspect ratio because increasing of the aspect ratio means increasing of the length of plate which leads to decrease the stiffness and increase the deflection.

Fig. (5) shows the effect of aspect ratio at (a=1m) on the maximum stress (σ_x) for different fiber orientation and boundary conditions of thick laminate plates. The figure shows that the stress (σ_x) increases with increasing the aspect ratio and the stress (σ_x) for (same thick laminated plates) of clamped edges plates is more than that of simply supported plates for cross-ply lamination and the stress (σ_x) for (same thick laminated plates) of simply supported plates is more than that of clamped edges plates of cross-ply
lamination because the fiber orientation and boundary conditions effects.

Fig. (8) shows the effect of (h/a) ratio at (a=1m), on the stress (σi) for cross-ply and angle-ply, with simply supported and clamped edges thick laminated plates. The figure shows that the stress (σi) decreases with increasing (h/a) ratio, that means it decreases with increase in thickness (h).

Figs. (9 and 10) show the inter-laminar shear stress (τx0) and (τy0) respectively, for four layers anti-symmetric angle-ply (45/-45/...) thick laminated plates subjected to uniformly ramp loading. The maximum shear stresses (τx0) and (τy0) occur at the middle plane (1.5 Mpa) and (0.82 Mpa) respectively, in addition the inter-laminar shear stresses (τx0) and (τy0) are symmetric about the middle plane for both cases of anti-symmetric cross-ply (0/90/0/...) and anti-symmetric angle-ply (45/-45/...) laminated plates, where the shear stress (τx0) and (τy0) between layer (1-2) is equal to the stress between layer (3-4) and less than the stress at the middle plane. The stresses (τx0) and (τy0) for anti-symmetric angle-ply (45/-45/...) are more than that of anti-symmetric cross-ply (0/90/0/...) (Figs. 11 and 12).

Fig. (13) shows the effect of number of layers on the inter-laminar shear stress (τx0) and (τy0) at the middle plane, i.e., between layers (2-3) for four layer anti-symmetric cross-ply (0/90/0/...) laminated plates subjected to uniform ramp loading. The figure shows that there is no effect to number of layers on the stress and the value of stresses (τx0) and (τy0). They remain constant when the number of layers increase because the distance (Z) of middle plane will remain constant and equal zero.

Fig. (14) represents the comparison of the inter-laminar shear stress (τx0) with (τy0) at middle plane for different aspect ratios (a/b), (a=1) for four layer anti-symmetric cross-ply thick laminated plates subjected to uniformly pulse loading. The shear (τx0) is greater than the (τy0) at (a/b=0.5) because the area under (τx0) is less than the area under (τy0), and (τx0) is less than (τy0) at (a/b=2) that because the area under (τx0) is less than the area under (τy0). The (τy0) increases with increasing of the aspect ratio.

Fig. (15) shows the effect of the degree of orthotropy ratio (Ei/Ej) of (E=10.6 Gpa) on the inter-laminar shear stress (τx0) and (τy0) at the middle plane, i.e., between layers (2-3) for four layer anti-symmetric cross-ply (0/90/0/...) thick laminated plates subjected to uniform ramp loading. The shear stresses (τx0) and (τy0) decrease with increasing of (Ei/Ej) ratio.
Fig. (5) Central Deflection for Different Fiber Orientation and Boundary Conditions of Thick Laminated Plate with Different Orthotropies (Modulus Ratio) \((E_1/E_2) \) Under Sinusoidal Loading for \((N=4) \).

Fig. (6) Central Deflection for Different Number of Layer \((N) \) and Boundary Conditions of Angle-Ply Laminated Plate with Different Angles \((\theta) \) Under Uniform Loading.
Fig. (7) Max. Stress (σ_x) for Different Fiber Orientation and Boundary Conditions of Thick Laminated Plate with Different Aspect Ratios (a/b) Under Sinusoidal Loading for (N=4).

Fig. (8) Max. Stress (σ_x) for Different Fiber Orientation and Boundary Conditions of Thick Laminated Plate with Different Thickness Ratios (h/a) Under Uniform Loading for (N=4).
Fig. (9) Inter-Laminar Shear Stress (τ_{xz}) due to Uniform Ramp Loading For (4) Layers, Anti-Symmetric Angle–Ply (45°/-45°,...) Laminated Plates.

Fig. (10) Inter-Laminar Shear Stress (τ_{yz}) due to Uniform Ramp Loading For (4) Layers, Anti-Symmetric Angle–Ply (45°/-45°,...) Laminated Plates.
Fig. (11) Inter-Laminar Shear Stress (τ_{xz}) due to Uniform Ramp Loading For (4) Layers, Anti-Symmetric Cross–Ply ($0^\circ/90^\circ/\ldots$) Laminated Plates.

Fig. (12) Inter-Laminar Shear Stress (τ_{yz}) due to Uniform Ramp Loading For (4) Layers, Anti-Symmetric Cross–Ply ($0^\circ/90^\circ/\ldots$) Laminated Plates.
Fig. (13) Effect of Number of Layers (N) on Inter-Laminar Shear Stress (τ_{xz}) and (τ_{yz}) at Middle Plane of (4) Layers, Anti-Symmetric Cross–Ply Laminated Plates, Under Uniform Ramp Loading.

Fig. (14) Effect of Aspect Ratio (a/b) on Inter-Laminar Shear Stress (τ_{xz}) and (τ_{yz}) at Middle Plane of (4) Layers, Anti-Symmetric Cross–Ply Laminated Plates, Under Uniform Pulse Loading.
Conclusions

1. The amplitude values of deflection and stress for angle-ply (45°/45°) thick laminated plates are less than that for cross-ply (0°/90°/0°) thick laminated plates in simply supported boundary condition and the situation is reversed in clamped boundary condition.

2. For the angle-ply thick laminated plates, it was found that, minimum deflection and stresses for simply supported laminated plates and maximum deflection for clamped laminated plates occurs at ($\theta=45^\circ$).

3. Increasing the number of layers (N), the degree of orthotropy ratio (E_1/E_2), and thickness-to-length (h/a) ratio of laminated plates decreases the deflection and stress in the plates. On the other hand they increase with the increase of the aspect ratio (a/b) of plates.

4. The inter-laminar shear stresses (τ_{xz}) and (τ_{yz}) in case of using anti-symmetric angle-ply (45°/45°/45°) lamination is more than using anti-symmetric cross-ply (0°/90°/0°) lamination.

5. There is no effect of the number of layers on the inter-laminar shear stress (τ_{xz}) and (τ_{yz}) at the middle plane and the values of stress will remain constant in spite of the increase in the numbers of layers.

6. The inter-laminar shear stress (τ_{xz}) at middle plane decreases with increasing the aspect ratio (a/b) and the orthotropy ratio (E_1/E_2) ratio of plates.

7. The values of the deflection and stresses for simply supported thick laminated plates are increased if the effect of the shear deformation and rotary inertia is taken into account.

References

Vibrational Behavior of Thick Plates

The following references are needed for the Vibrational Behavior of Thick Plates:

The Vibrational Behavior of Thick Plates is analyzed using various plate theories. The study focuses on the vibration characteristics of thick plates under different boundary conditions. The theoretical analysis is supported by numerical simulations and experimental data. The results are compared with existing literature to validate the proposed models.

The equations of motion for thick plates are derived using the classical plate theory and the first-order shear deformation plate theory. The modal analysis is performed using the finite element method to obtain the natural frequencies and mode shapes of the plates.

The key parameters affecting the vibration behavior of thick plates include the plate thickness, the Young's modulus, the Poisson's ratio, and the boundary conditions. The influence of these parameters on the vibration characteristics is studied in detail.

The numerical results are validated against experimental data obtained from laboratory tests. The comparison shows a good agreement between the theoretical predictions and the experimental results, indicating the reliability of the proposed models.

The study concludes with a discussion of the implications of the findings for the design and optimization of thick plate structures. It is recommended that further research be conducted to extend the models to include more complex boundary conditions and material properties.