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ABSTRACT

The primary objective of research is to determine the improved structural efficiency of plates can be
with variable fiber spacing. The Post-buckling of laminated composite plate with variable fiber spacing is
obtained numerically, using eight node isoparametric quadrilateral elements (serendipity element) with five
degree of freedom per node. The mathematical formulation is based on first-order shear deformation theory
and von-Karman non-linearity. The effect of the initial geometric imperfection, fiber spacing, orientation
fiber, and direction of in-plane loading were considered. Numerical results for boron/Epoxy fiber reinforced
laminates are presented for the different effects of the composite plate under in-plane loading. This study
showed that the post buckling behavior of composite plate very sensitive for type of distribution fiber and the
seventh distribution equation gives maximum buckling load and smallest deformation.
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INTRODUCTION

Composite laminates have been developed and utilized because of its outstanding bending rigidity, low
specific weight, superior isolating qualities, excellent vibration characteristics and good fatigue properties.
The first two characteristics are the major reasons to make it use more often in aerospace vehicles that need
high strength-to-weight ratio. Thin-walled structures are often designed to carry compressive loads not only
until an initial buckling load but also far beyond it: in a post buckling regime. In these problems, the initial
buckling load of the plate elements, as well as the stiffness and strength of the structures in the post buckling
phase are critical considerations in the design process. Buckling and post buckling resistance can be
increased by various optimization methods. Optimization is a common approach in designing structures
made of composites, since these materials can be easily adapted to a given situation. The most common
optimization techniques include a variation of fiber directions, ply thickness and stacking sequences.
However, it is possible that significant increases in structural efficiency may be obtained by varying the fiber
spacing--packing them closely together in regions where great stiffness is needed, but less densely in other
regions [Sheh and Le, 2009].

Martin and Leissa investigated the plane stress problem of a rectangular of composite sheet with variable
fiber content [Martin and Leissa, 1989]. The single layer composite having fibers parallel to the edges are
macroscopically orthotropic, but non homogeneous. The stresses obtained from this analysis were treated as
input to the first vibration and buckling study of composites with variable fiber spacing [Leissa and Martin,
1990]. Numerical results are obtained for six nonuniform distributions of glass, graphite and boron fibers.
The redistribution may increase the buckling load by as much as 38%. Leissa and Martin [Leissa and
Martin, 1990]also presented exact solutions for the stress, strain and displacement fields for four types of
problems with arbitrary fiber spacing. Shiau and Chue [Shiau and Chue, 1991] also used a similar concept
to reduce the free edge interlaminar stresses.

By varying the fiber volume fraction near the free edge, the interlaminar normal and shear stresses near
the free edges can be significantly reduced. Shiau and Lee [Shiau and Chue, 1993] studied stress
concentration around holes in composite laminates with variable fiber spacing. An 18 degree of freedom
higher-order triangular plane stress element was developed to investigate the effect of variable fiber spacing
on the stress concentration around a hole in a composite laminated plate subjected to in-plane boundary
loadings. It proves that reducing the fiber volume ratio near the edges of hole can significantly reduce the
stress concentration in that region. It is interesting to note that the higher fiber volume fraction may increase
the buckling load of the plate. The stress concentration is also more obvious in the region with higher fiber
volume fraction. Recently, Sheh-Yao and Le-Shiau [Sheh and Le, 2009] studied Buckling and vibration of
composite laminated plates with variable fiber spacing by use finite element method. The formulation of the
location-dependent stiffness matrix due to non homogeneous material properties was derived. They
concluded that the more fibers distributed in the central portion of the plate may efficiently increase the
buckling load and natural frequencies. The fibers distributed in the outer portion of the plate may increase
the critical buckling load. So, they concluded that the natural frequencies decreased due to increasing more
mass than stiffness where the fiber distribution may change the stiffness and mass of the plate.

So, the present study is the first to treat the post buckling problems for composite plates having variable
fiber spacing. The primary objective is to determine whether the structural efficiency of plates can be
improved with variable fiber spacing. Initial imperfection, fiber angle, and direction of load, were
considered in the present study.

FORMULATION OF COMPOSITE LAMINATED PLATES
Consider a composite laminated plate with length a, width b and thickness 4, using Mindlin formulation,

the gross displacements u = [u v w]T at (x,,z) are expressed as functions of the mid plane translations

u,v,w and independent normal rotations €, and &, [Pica, Wood and Hinton, 1979].
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6 and 9y , are the rotations of the normals, to the undeformed midplane, in the xz and yz planes respectively.

These normals are not necessarily normal to the mid plane after deformation and consequently shear
deformation is permitted, w and w; equal the mid plane initial and net deformations in the z-direction,

respectively w, (x, y), w, (x, y), see Figure 1.

For a Mindlin plate theory, the relevant midplane Green's strain vector is revised to give [Pica, Wood and

Hinton, 1979]:
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Introducing the von-Karman assumptions which imply that derivatives of # and v with respect to x, y and z
are small and noting that w is independent of z allows Green’s strain to be rewritten in terms of the mid plane

deformations of Equation(l), as [Pica, Wood and Hinton, 1979]:
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And the shear strain

6gvx _o,

g =— ag (4¢)
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The linear contribution of the initial deformation to the in plane strain:
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And finally the nonlinear component of in plane strain;
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The vector components of Equation (4), represent the generalized strains. It can be noticed that the vector
8; + 811, +¢& If reproduces the Marguerre strain expression for moderately thick plate.

The basis of the formulation is the virtual work equation for a continuum written in a total Lagrangian

coordinate system under the assumption of small strains and conservative loading as [Pica and Wood,
1980]:
IdeTadv=Ipduquv+IdqudA )
4 4 A

where V is the undeformed volume, u the Piola-Kirchhoff stress vector, de the virtual Green’s strain vector
due to the virtual displacements du, p the mass density, ¢ the body forces per unit mass and p surface
tractions acting over an undeformed area A4.

For the plate formulation this virtual work equation is to be rewritten in terms of area integrals over
the midsurface. The internal virtual work d W; can be written as an integral over the plate area 4 and
thickness ¢ as,

aw, = IdgTo-dv = I h'/[z(dgxax tde o, +dy v +dy 7. +dy, T, )dz.dA (6)
V

A—h/2

Substituting the strain expression from Equation (3) into equation (6) and integrating over the thickness
allows dW; to be rewritten only as an area integral giving,
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AW, = { ds" 6 dA o

In which the resultant vector o is,

CTP
=10, @®)
0-0
which contains the following components, in-plane
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—h/2
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The second integral in Equation (6) which represents the external virtual work due to body forces may be
rewritten as [Pica and Wood,1980],

aw’ = I h'/[zp(duqx +dvq, +dwq, )dz.dA (12)

A—h/2

Substituting for #, v and w from Equation (1) and integrating explicitly through the thickness allows equation
(12) to be expressed as an area integral giving,

aw, = [ du’ gdA 13)
A

Where the midplane displacement vector # is,
~ ~ ~ ~ T
u= [u v w 6, 6’y] 14)

And the generalized body force vector ¢ ia,
)

i=la, 4, 4. M, My]T= Ip(qx q, 4. —4.% —‘Iyz»z (15)

—h/2

If the body force vector pgq is constant over thickness, g becomes simply;

¢§=Loqxt pq,t pgt 0 0]’ (16)

where typically pg . is the force per unit area in the x direction. Finally the third integral of equation (5)

which represents the external virtual work due to tractions may be split into two terms relating to the plate
surfaces (A4y),z = £¢#/2, and the plate edges (a,), see Figure 2, as,
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dW,, = [du'PdA+ |du'P, dA an
A, A,

where the tractions on the surfaces z =+ ¢/2 are,
T
p={p, P, P| (18)

and the global edge tractions P, are given in terms of the local edge tractions Py, P, and P, as,

P; c s 0[P,
P,= P r=|s ¢ O0[4P, 19)
P’ 0 0 1||P,

where ¢ = cos0 and s = sin 0, see Figure 2.

Substituting for u, v and w from equation (1) into equation (17) and integrating the edge area integral
explicitly through the thickness gives the work termd We; , as the sum of an area integral over (a) and a line

integral over an edge length s.
t _ ~T p ~T p
W, = [du" PdA+[du" P, ds 20)
Ay s
where

p={p, P, P, M, M,)J 1)

The generalized edge forces are:
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The virtual work equation (17) may now be written entirely in terms of “mid plane” quantities as,

'[déTo”'dA=_[pdﬁ’édv+!dﬁ’ﬁdA+.!dﬁTﬁe ds 23)

s

The plate is assumed to consist of NV layers of orthotropic sheets bonded together. Each layer has arbitrary
fiber orientation. The fibers in each layer are aligned parallel to the longitudinal direction but distributed
unevenly in the transverse direction. Hence, the fiber volume fraction, ¥, is a function of nondimensional
coordinate x having its origin at the plate edge of plate as shown in Figure 3. Suppose, for example, the
fibers are aligned parallel to the x direction and the fiber volume fraction varies parabolically

4 4
asV , (x) = (Zx - szj . The material is all fiber at the plate center (x= a/2), whereas at the edges (x= 0,

a), it is all matrix. With this variable fiber spacing, the elastic modulus E;, E,, vi, Gy, for the composite
material are also the functions of x. In this study, the formulas used for the calculation of these effective
engineering constants are based on the rule of mixture [Sheh and Le, 2009].
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The stress—strain relation for the orthotropic sheet with variable fiber spacing can be expressed as:
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For a composite laminated plate with NV layers, the stress—strain relation of kth layer of the plate can be
expressed as:

{o} =0l {e} @7

where Q) are the transformed reduced stiffness. Now the stress—strain relation becomes location dependent.
The force and moment resultants of the composite laminated plate are defined as [Phan, and Reddy, 1985]:
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where the extensional rigidity [A] and bending rigidity [D] of the panel are defined as:
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Before proceeding with the discretisation of the virtual work equation (23), it is necessary to consider further
the variation of strain du due to the virtual displacementsdé . Generally d€ is given as the sum of the
variation of the linear and nonlinear generalized strains as [Sheh and Le, 2009]:

dé =dé’ +dé" (33)
i 0 0 0 0
ox
0 i 0 0 0
oy
R N T N
oy Ox u
0 it
0 0 0o -— 0
dé’ = 0x 5 d{w} (34)
0 0 0 o0 -—||p
oy x
0
0 0 _o6 _o| 9]
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If the displacement gradients with respect to the lateral displacements w are,

A AT

g=| " m (35)
ox Oy

vAv=W+WO

Where :

W,=l1nitial deflection .

Then the variation of the nonlinear component of the inplane strain is obtained from equation (4¢) in terms of
the virtual gradients d@ as,

dé, = A,d6 (36)
where
g
ox ~
a,=l o0 (37)
oy
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ox Oy

May now be written in terms of the nodal displacements (u#) and Cartesian derivatives of the shape functions
as:

d0=[G| du (39)
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where
[¢l=[6¢, G, G, G,] (40)
and,
0 0 aév L0 0
G; = v 1)
00 ON; 00
oy

The above equation represents the gradient for five degrees of freedom per node. The generalized Green’s
strain vector of equation (33) is given in terms of nodal displacements u, displacement gradients 44 and
Cartesian derivatives of NV as [Pica and Wood, 1980],

é= [Bo + %BL (u)]u (42)

where B, is the strain matrix giving the linear strains 6‘; g,and g/ and B, which is linearly dependent

upon u, gives the nonlinear strains 6‘5 . Consequently the nonlinear strains are quadratically dependent upon

the nodal displacements u.

The constant matrix B, is written in terms of nodal sub matrices as,

B, =[B,,B,,....B,, (43)
Where
B 0
B,=| 0 B, (44)
0 B,
In which component matrices are in-plane matrix
ON,
Zi
ox
ON,
Bl = 0 — 45)
oy
ON, ON,
| Oy Ox |
Bending matrix
[ aw, ]
0 —— 0
ox
ON,
B =lo o -2 (46)
oy
0 ON, ON,
Oy ox |

And then shear matrix
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N,
% -N, 0
B, =| 57 47)
oi 6N
—_t 0 Ni
oy

The strain matrix B, consists of the nodal sub matrices

B, =[B,, B, ... B,,] (48)
Where
A0
B, =|0 |G, (49)
0

The strain variation in terms of the virtual nodal displacements du as,

dé = Bdu (50)
In which
B=B,+B, 51

The virtual work equation (23) is discretised, for an element, by substituting becomes as [Pica and Wood,
1980],

{IBT&dA—R}du=0 52
A
where the equivalent nodal load vector R due to body forces and tractions is,

R=[N"GdA+ [N"PdA +[N"P,ds 53
A As s

Since the nodal virtual displacements du is arbitrary the element nonlinear equilibrium equations become,
w(u)=[B"6d4-R=0 54
A

The load vector R may also contain nodal point loads. Equation (54) can have the dual role of representing
either the element, or in an assembled form the total equilibrium equation. It is a nonlinear equation in #

since B and & is linear and quadratic functions of u respectively.
In order to use an incremental solution procedure, the relation between du and d¥ must be found. Thus,
taking appropriate variation of Equation (54) with respect to du:

d¥ = deT6dV+jBTd&dV (55)
Vv Vv

where the variation of the external load with respect to displacements is equal to zero, and thus Equation (55)
can be written at another form:

d¥ = [dB]Gav + K] (56)
V

where
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[K]=[B"DBas=[K,]+[K,] 57)
A
The first term of Equation (56) can be written as:

[aB]5av =K ] (58)
| 4

where [K 6] is a symmetric matrix dependent on the stress level. This matrix is known as initial stress

matrix or geometric matrix, thus,
a¥ = (K, |+ [K,]+[K,]) du=[K,]du (59)

with [K T] being the total, or tangent stiffness matrix and [K 0] is the constant linear elastic stiffness matrix

and can be written as:
[k,]= [ B] DB, dA (60)
A

[K L] is the initial or large displacement matrix which is quadratically dependent upon displacement u, and
can be written as [Pica and Wood, 1980]:

[k,]=[B, DB, d4+[B,"DB,d4+[B," DB, d (61)
A A A

Finally [K 6] is the initial stress stiffness matrix which has to be found by using the definition of Equation
(58). By taking the variation of Equation (51) then:

dB," = 0.0 (62)
L7 laB!" o

This on substitution into Equations (58) and (37) gives:

P (63)

K- oy of

However, using the mathematical properties of the matrix [4], this matrix can be written as:

N

*' [N, N
dlA]'{ N, { ny}[G]da (64)

xy y
N,

=

and finally one can obtain
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L B [1?5;]} (65)

k=gl 3 il )

Thus,

It is recalled that the stresses resultants. In the present study, the imperfection is assumed to be of sinusoidal
function over the plate as:

w, (x, y) =w, sin(n m] sin( " 7zy) (67)

a b

The selective integration rule has been adopted to compute the integration of the matrices where (3%3) is
used for bending and membrane energies and (2x2) for transverse shear energies.

The algorithm of the solution takes into account the nonlinearity in geometry of the element. The external
load is applied incrementally and at every load increment the stiffness matrix of the plate is updated. The
solution has been achieved by using the modified Newton-Raphson iterations technique. In the present study
was used eight-node Serendipity element shown in Figure 4. This element contains four nodes at the
corners, four nodes at the mid-sides of the element boundaries. The topology order is counter-clockwise in
the sequence from 1 to 8 [Ammash, 2008].

NUMERICAL RESULTS AND DISCUSSION

A computer program has been developed, based on the foregoing finite element model to solve a number
of numerical examples on the large displacement analysis of composite plate with variable spacing fiber
under in-plane axial loading. Serendipity eight node element and five degree of freedom per node are used in
the computations. Various boundary conditions, different aspect ratios, different slenderness ratios, different
equations of distribution fibers were studied.
The material was used in the investigation consist from boron fibers with an epoxy matrix. Material
properties are (E~413.68GPa, E,=3.44GPa, G~172.36GPa, G,=1.277GPa, v~0.2, and v,=0.35) and the
geometrical properties of the plate depends on the type of examples.
Seven different distributions of fibers were considered, each characterized by variations of the fiber volume
fraction (¥7), as given in Table 1. These fiber distributions fall into two groups, having maximum values of
V;0f 100% and 75%. Table 1 also gives (Vy,,), which is the average value of Vy for each distribution. That is,

Vi = [V, (x)x (68)
0

Figure 5 shows the load-deflection curve of the simply supported laminated composite plate with variable
fiber spacing under in-plane loading at x-direction obtained by using (2x2) mesh for the quarter plate. Seven
equation of fiber distribution were used. This figure reveals the finite element results obtained by the eight-
node isoparametric serendipity elements. In this example, the geometric properties of the analyzed plate are
(a=b=1.0 m, h=0.01 m, w,/h=0.0,80 = 0). From this figure can be noticed that the post buckling behavior of
composite plate very sensitive for type of distribution fiber and the seventh distribution equation in Table 1
gives maximum buckling load and smallest deformation.

Figure 6 shows the load-deflection curve of the simply supported laminated composite plate with variable
fiber spacing under in-plane loading at y-direction obtained by using (2x2) mesh for the quarter plate. Seven
equation of fiber distribution were used. In this example, the geometric properties of the analyzed plate are
(a=b=1.0 m, h=0.01 m, w,/h=0.0,6 = 0). From this figure can be noticed that the post buckling behavior of
composite plate very sensitive for type of distribution fiber and the direction of uniaxial load. So the
buckling load of the composite plate under in-plane loading at y-direction less than the buckling load of the
composite plate under in-plane loading at x-direction about 14% for the seventh distribution equation. The
seventh distribution equation gives maximum buckling load and smallest deformation.
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Figure 7 shows the load-deflection curve of the simply supported laminated composite plate with variable
fiber spacing under in-plane loading at x-direction. Seven equation of fiber distribution were used. The plate
has initial imperfection (w,/t) of (0.1) of which shape is considered to be sinusoidal curve where w, is the
amplitude of the initial imperfection at center of plate. In this example, the geometric properties of the
analyzed plate are (a=b=1.0 m, h=0.01 m, w,/h=0.1,8 = 0). From this figure can be noticed that the post
buckling behavior of composite plate very sensitive for type of distribution fiber and to the initial
imperfection.

Figure 8 shows the effect of fiber’s orientation on the post buckling analysis of composite laminated plate
with variable spacing fiber under in-plane compressive load. The seventh distribution fiber equation was
used in this example. From this figure, it could be noticed that the post buckling of the plate with (#=0°and
0=90°) gives minimum deformation. This orientation’s fiber means that it is the optimum for a plate under
in-plane compressive load.

Figure 9 shows the effect of fiber’s orientation on the post buckling analysis of composite laminated plate
with variable spacing fiber under in-plane compressive load at x-direction. In this example, the geometric
properties of the analyzed plate are (a=b=1.0 m, h=0.01 m, w,/h=0.1). The all distribution fiber equations
were used in this example. From this figure, it could be noticed that the post buckling of the plate with
(6=0°and #=90°) gives minimum deformation.

This orientation’s fiber means that it is the optimum for a plate under in-plane compressive load. The
proposed distribution equation represents optimum equation for the composite plate under in-plane loading.

CONCLUSIONS

It has been demonstrated that, for single layer plates having parallel fibers that are not densely
packed, significant improvement in structural efficiency is obtainable by redistribution of the fibers
so that they are concentrated more in the plate center where the fiber distribution may change the
stiffness of the plate. The behavior of a laminated plate is very sensitive to the type of distribution
fiber and it is found that the central deflection of a plate with (6 =0° and @ =90°) gives response less
than others; this orientation of fibers is optimum for plates under in-plane compression load.
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Table 1 Equations of fiber Distribution.

Volume fraction of
No. V,(x) fiber (%)
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Figure 1 Deformations of moderately thick plate
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Figure 3 rectangular composite plates with variable fiber spacing.
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Figure 4 Eight-node quadrilateral isoparametric element.
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Figure 5 Post-buckling behavior of a square simply supported laminated composite plate with
variable fiber spacing under uniaxial compression load x-direction.
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Figure 6 Post-buckling behavior of a square simply supported laminated composite plate with
variable fiber spacing under uniaxial compression load y-direction.
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Figure 7 Post-buckling behavior of a square simply supported laminated composite plate
with variable fiber spacing under in-plane loading at x-direction
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Figure 8 Post-buckling behavior of a square simply supported laminated composite plate with
variable fiber spacing with various fiber orientations
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Figure 9 Deflection-orientation fiber curve of composite laminated plate under in-plane
compression load at x-direction
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