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ABSTRACT 
        The primary objective of research is to determine the improved structural efficiency of plates can be 
with variable fiber spacing. The Post-buckling of laminated composite plate with variable fiber spacing is 
obtained numerically, using eight node isoparametric quadrilateral elements (serendipity element) with five 
degree of freedom per node. The mathematical formulation is based on first-order shear deformation theory 
and von-Karman non-linearity. The effect of the initial geometric imperfection, fiber spacing, orientation 
fiber, and direction of in-plane loading were considered. Numerical results for boron/Epoxy fiber reinforced 
laminates are presented for the different effects of the composite plate under in-plane loading.  This study 
showed that the post buckling behavior of composite plate very sensitive for type of distribution fiber and the 
seventh distribution equation gives maximum buckling load and smallest deformation. 
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تحليل اللآخطية الهندسية للصفائح المركبة المتطبقة والغير مضبطة مع تغير 

 مسافات الألياف
 علي إبراهيم الموسوي

   بابل–المعهد التقني / مدرس
 

  الخلاصة

      الهدف الرئيسي للبحث هو لتحديد إمكانية تحسين الكفاءة الإنشائية للصفائح من خلال تغيـر مـسافات                

تم حصول النتائج العددية للإنبعاج اللاحق للصفائح المركبة والمطبقة مع ألياف متغيـرة المـسافات               . الألياف

الصيغة الرياضية  . خدام عناصر رباعية الشكل ذات ثمانية عقد مع خمسة درجات الحرية للعقدة الواحدة            باست

تم الأخذ بنظر الإعتبار تـأثير      ).von-Karman(موضوعة على  نظرية التشوهات القصية الأولى ولاخطية         

النتـائج  .  الأحمـال المحوريـة     وإتجاه  زاوية تدوير الألياف؛   التشوهات الهندسية الابتدائية؛ مسافات الألياف؛    

 ـ    تم تقديمها لمجمل من المؤثرات للصفائح المركبة       ) إيبوكسي/البورون(العددية الخاصة بالـطبقات المسلحة ب

أظهرت هذه الدراسة إن الإنبعاج اللاحق للصفائح جدا حساس لنمط توزيع الألياف وان             . تحت أحمال محورية  

  . إنبعاج وأقل تشوهمعادلة التوزيع السابعة تعطي أكبر حمل
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INTRODUCTION 
Composite laminates have been developed and utilized because of its outstanding bending rigidity, low 

specific weight, superior isolating qualities, excellent vibration characteristics and good fatigue properties. 
The first two characteristics are the major reasons to make it use more often in aerospace vehicles that need 
high strength-to-weight ratio.  Thin-walled structures are often designed to carry compressive loads not only 
until an initial buckling load but also far beyond it: in a post buckling regime.  In these problems, the initial 
buckling load of the plate elements, as well as the stiffness and strength of the structures in the post buckling 
phase are critical considerations in the design process.  Buckling and post buckling resistance can be 
increased by various optimization methods. Optimization is a common approach in designing structures 
made of composites, since these materials can be easily adapted to a given situation. The most common 
optimization techniques include a variation of fiber directions, ply thickness and stacking sequences. 
However, it is possible that significant increases in structural efficiency may be obtained by varying the fiber 
spacing--packing them closely together in regions where great stiffness is needed, but less densely in other 
regions [Sheh and Le, 2009]. 

Martin and Leissa investigated the plane stress problem of a rectangular of composite sheet with variable 
fiber content [Martin and Leissa, 1989]. The single layer composite having fibers parallel to the edges are 
macroscopically orthotropic, but non homogeneous. The stresses obtained from this analysis were treated as 
input to the first vibration and buckling study of composites with variable fiber spacing [Leissa and Martin, 
1990]. Numerical results are obtained for six nonuniform distributions of glass, graphite and boron fibers. 
The redistribution may increase the buckling load by as much as 38%. Leissa and Martin [Leissa and 
Martin, 1990]also presented exact solutions for the stress, strain and displacement fields for four types of 
problems with arbitrary fiber spacing. Shiau and Chue [Shiau and Chue, 1991] also used a similar concept 
to reduce the free edge interlaminar stresses.  

By varying the fiber volume fraction near the free edge, the interlaminar normal and shear stresses near 
the free edges can be significantly reduced. Shiau and Lee [Shiau and Chue, 1993] studied stress 
concentration around holes in composite laminates with variable fiber spacing. An 18 degree of freedom 
higher-order triangular plane stress element was developed to investigate the effect of variable fiber spacing 
on the stress concentration around a hole in a composite laminated plate subjected to in-plane boundary 
loadings. It proves that reducing the fiber volume ratio near the edges of hole can significantly reduce the 
stress concentration in that region. It is interesting to note that the higher fiber volume fraction may increase 
the buckling load of the plate. The stress concentration is also more obvious in the region with higher fiber 
volume fraction. Recently, Sheh-Yao and Le-Shiau [Sheh and Le, 2009] studied Buckling and vibration of 
composite laminated plates with variable fiber spacing by use finite element method. The formulation of the 
location-dependent stiffness matrix due to non homogeneous material properties was derived.  They 
concluded that the more fibers distributed in the central portion of the plate may efficiently increase the 
buckling load and natural frequencies. The fibers distributed in the outer portion of the plate may increase 
the critical buckling load. So, they concluded that the natural frequencies decreased due to increasing more 
mass than stiffness where the fiber distribution may change the stiffness and mass of the plate. 

So, the present study is the first to treat the post buckling problems for composite plates having variable 
fiber spacing.  The primary objective is to determine whether the structural efficiency of plates can be 
improved with variable fiber spacing.  Initial imperfection, fiber angle, and direction of load, were 
considered in the present study. 
 
FORMULATION OF COMPOSITE LAMINATED PLATES    
       Consider a composite laminated plate with length a, width b and thickness h, using Mindlin formulation, 
the gross displacements  at (x,y,z) are expressed as functions of the mid plane translations [ Twvuu = ]
u) , v) , w)  and independent normal rotations xθ  and yθ [Pica, Wood and Hinton, 1979]. 
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xθ and yθ , are the rotations of the normals, to the undeformed midplane, in the xz and yz planes respectively.  
These normals are not necessarily normal to the mid plane after deformation and consequently shear 
deformation is permitted, w and w1 equal the mid plane initial and net deformations in the z-direction, 
respectively ( ) ( yxwyxwo ,,, 1 )) , see Figure 1. 
For a Mindlin plate theory, the relevant midplane Green's strain vector is revised to give [Pica, Wood and 
Hinton, 1979]: 
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Introducing the von-Karman assumptions which imply that derivatives of u and v with respect to x, y and z 
are small and noting that w is independent of z allows Green’s strain to be rewritten in terms of the mid plane 
deformations of Equation(l), as [Pica, Wood and Hinton, 1979]: 
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where the linear midplane strains are:  
The in-plane strain  
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The bending strain: 
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And the shear strain 
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The linear contribution of the initial deformation to the in plane strain: 
 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

x
w

y
w

y
w

x
w

y
w

y
w

x
w

x
w

oo

o

o

I
p

11

1

1

..

.

.

))))

))

))

ε  (4d)

 
And finally the nonlinear component of in plane strain; 
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The vector components of Equation (4), represent the generalized strains.  It can be noticed that the vector 

 reproduces the Marguerre strain expression for moderately thick plate. L
p

I
p

o
p εεε ++

The basis of the formulation is the virtual work equation for a continuum written in a total Lagrangian 
coordinate system under the assumption of small strains and conservative loading as      [Pica and Wood, 
1980]: 
 

dApdudvqdudvd
A

T

V

T

V

T ∫∫∫ += ρσε  (5)

 
where V is the undeformed volume, u the Piola-Kirchhoff stress vector, dε the virtual Green’s strain vector 
due to the virtual displacements du, p the mass density, q the body forces per unit mass and p surface 
tractions acting over an undeformed area A. 

For the plate formulation this virtual work equation is to be rewritten in terms of area integrals over 
the midsurface. The internal virtual work d Wi can be written as an integral over the plate area A and 
thickness t as, 

 

( ) dAdzddddddvddW
A

h

h
yzyzxzxzxyxyyyxx

V

T
i .

2

2
∫ ∫∫
−

++++== τγτγτγσεσεσε  (6)

 
Substituting the strain expression from Equation (3) into equation (6) and integrating over the thickness 
allows dWi to be rewritten only as an area integral giving, 
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In which the resultant vector σ) is, 
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which contains the following components, in-plane 
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The second integral in Equation (6) which represents the external virtual work due to body forces may be 
rewritten as [Pica and Wood,1980], 
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Substituting for u, v and w from Equation (1) and integrating explicitly through the thickness allows equation 
(12) to be expressed as an area integral giving, 
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Where the midplane displacement vector u)  is, 
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And the generalized body force vector q) ia, 
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If the body force vector qρ is constant over thickness, q)  becomes simply; 
 

[ ]Tzyx tqtqtqq 00ρρρ=)  (16)
 
where typically xqρ  is the force per unit area in the x direction. Finally the third integral of equation (5) 
which represents the external virtual work due to tractions may be split into two terms relating to the plate 
surfaces (As),z = ±t/2, and the plate edges (ae), see Figure 2, as, 
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where the tractions on the surfaces z = ± t/2 are, 
 

{ }T
zyx PPPP =  (18)

 
and the global edge tractions Pe are given in terms of the local edge tractions Px, Py and Pz as, 
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where c = cosθ and s = sin θ, see Figure 2. 
 
Substituting for u, v and w from equation (1) into equation (17) and integrating the edge area integral 
explicitly through the thickness gives the work term , as the sum of an area integral over (a) and a line 
integral over an edge length s. 
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The generalized edge forces are: 
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The virtual work equation (17) may now be written entirely in terms of “mid plane” quantities as, 
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The plate is assumed to consist of N layers of orthotropic sheets bonded together. Each layer has arbitrary 
fiber orientation. The fibers in each layer are aligned parallel to the longitudinal direction but distributed 
unevenly in the transverse direction. Hence, the fiber volume fraction, Vf, is a function of nondimensional 
coordinate x having its origin at the plate edge of plate as shown in Figure 3. Suppose, for example, the 
fibers are aligned parallel to the x direction and the fiber volume fraction varies parabolically 

as ( ) ⎟
⎠
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⎛ −= 2

2

44 x
L

x
L

xV f . The material is all fiber at the plate center (x= a/2), whereas at the edges (x= 0, 

a), it is all matrix. With this variable fiber spacing, the elastic modulus E1, E2, v12, G12 for the composite 
material are also the functions of x.  In this study, the formulas used for the calculation of these effective 
engineering constants are based on the rule of mixture [Sheh and Le, 2009].  
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The stress–strain relation for the orthotropic sheet with variable fiber spacing can be expressed as: 
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For a composite laminated plate with N layers, the stress–strain relation of kth layer of the plate can be 
expressed as: 
 

{ } [ ] { }εσ kk Q=  (27)
 
where Qij are the transformed reduced stiffness. Now the stress–strain relation becomes location dependent. 
The force and moment resultants of the composite laminated plate are defined as [Phan, and Reddy, 1985]: 
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which leads to, 
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where the extensional rigidity [A] and bending rigidity [D] of the panel are defined  as:  
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Before proceeding with the discretisation of the virtual work equation (23), it is necessary to consider further 
the variation of strain du due to the virtual displacements ε̂d . Generally ε̂d  is given as the sum of the 
variation of the linear and nonlinear generalized strains as [Sheh and Le, 2009]: 
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If the displacement gradients with respect to the lateral displacements  are, ŵ
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Where : 
wo=initial deflection . 

 

 
Then the variation of the nonlinear component of the inplane strain is obtained from equation (4e) in terms of 
the virtual gradients θd  as, 
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And, 
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May now be written in terms of the nodal displacements (u) and Cartesian derivatives of the shape functions 
as: 
 

[ ] duGd =θ  (39)
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where 
[ ] [ ]nGGGGG 321=  (40)

and, 
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The above equation represents the gradient for five degrees of freedom per node. The generalized Green’s 
strain vector of equation (33) is given in terms of nodal displacements u, displacement gradients Aθ and 
Cartesian derivatives of N as [Pica and Wood, 1980], 
 

( ) uuBB Lo ⎥⎦
⎤

⎢⎣
⎡ +=

2
1ε̂  (42)

 
where Bo is the strain matrix giving the linear strains and  and Bo

pε
o
bε

o
sε L, which is linearly dependent 

upon u, gives the nonlinear strains . Consequently the nonlinear strains are quadratically dependent upon 
the nodal displacements u.  

L
pε

 
The constant matrix Bo is written in terms of nodal sub matrices as, 
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In which component matrices are in-plane matrix 
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Bending matrix 
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And then shear matrix 
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The strain matrix BL consists of the nodal sub matrices 
 

[ ]LnLLL BBBB .......21=  (48)
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The strain variation in terms of the virtual nodal displacements du as, 
 

Bdud =ε̂  (50)
In which 

Lo BBB +=  
51

 
The virtual work equation (23) is discretised, for an element, by substituting becomes as [Pica and Wood, 
1980], 
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where the equivalent nodal load vector R due to body forces and tractions is, 
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Since the nodal virtual displacements du is arbitrary the element nonlinear equilibrium equations become, 
 

( ) 0ˆ =−= ∫ RdABu
A
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The load vector R may also contain nodal point loads. Equation (54) can have the dual role of representing 
either the element, or in an assembled form the total equilibrium equation. It is a nonlinear equation in u 
since B andσ̂  is linear and quadratic functions of u respectively. 
In order to use an incremental solution procedure, the relation between du and dΨ must be found. Thus, 
taking appropriate variation of Equation (54) with respect to du: 
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where the variation of the external load with respect to displacements is equal to zero, and thus Equation (55) 
can be written at another form: 
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where 
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The first term of Equation (56) can be written as: 
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where  is a symmetric matrix dependent on the stress level.  This matrix is known as initial stress 
matrix or geometric matrix, thus, 
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with [  being the total, or tangent stiffness matrix and ]TK [ ]oK  is the constant linear elastic stiffness matrix 
and can be written as: 
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]

 is the initial or large displacement matrix which is quadratically dependent upon displacement u, and 
can be written as [Pica and Wood, 1980]: 
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Finally  is the initial stress stiffness matrix which has to be found by using the definition of Equation 
(58).  By taking the variation of    Equation (51) then: 
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This on substitution into Equations (58) and (37) gives: 
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However, using the mathematical properties of the matrix [A], this matrix can be written as: 
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and finally one can obtain 
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Thus, 
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It is recalled that the stresses resultants.  In the present study, the imperfection is assumed to be of sinusoidal 
function over the plate as: 
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The selective integration rule has been adopted to compute the integration of the matrices where (3×3) is 
used for bending and membrane energies and (2×2) for transverse shear energies. 
The algorithm of the solution takes into account the nonlinearity in geometry of the element.  The external 
load is applied incrementally and at every load increment the stiffness matrix of the plate is updated.  The 
solution has been achieved by using the modified Newton-Raphson iterations technique. In the present study 
was used eight-node Serendipity element shown in Figure 4.  This element contains four nodes at the 
corners, four nodes at the mid-sides of the element boundaries.  The topology order is counter-clockwise in 
the sequence from 1 to 8 [Ammash, 2008]. 
 
NUMERICAL RESULTS AND DISCUSSION 
       A computer program has been developed, based on the foregoing finite element model to solve a number 
of numerical examples on the large displacement analysis of composite plate with variable spacing fiber 
under in-plane axial loading. Serendipity eight node element and five degree of freedom per node are used in 
the computations. Various boundary conditions, different aspect ratios, different slenderness ratios, different 
equations of distribution fibers were studied. 
The material was used in the investigation consist from boron fibers with an epoxy matrix. Material 
properties are (Ef=413.68GPa, Em=3.44GPa, Gf=172.36GPa, Gm=1.277GPa, vf=0.2, and vm=0.35) and the 
geometrical properties of the plate depends on the type of examples. 
Seven different distributions of fibers were considered, each characterized by variations of the fiber volume 
fraction (Vf), as given in Table 1.  These fiber distributions fall into two groups, having maximum values of 
Vf of 100% and 75%. Table 1 also gives (Vfav), which is the average value of Vf for each distribution. That is, 
 

( )∫=
a

ffav dxxVV
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 (68)

 
Figure 5 shows the load-deflection curve of the simply supported laminated composite plate with variable 
fiber spacing under in-plane loading at x-direction obtained by using (2×2) mesh for the quarter plate.  Seven 
equation of fiber distribution were used. This figure reveals the finite element results obtained by the eight-
node isoparametric serendipity elements.  In this example, the geometric properties of the analyzed plate are 
(a=b=1.0 m, h=0.01 m, wo/h=0.0, 0=θ ). From this figure can be noticed that the post buckling behavior of 
composite plate very sensitive for type of distribution fiber and the seventh distribution equation in Table 1 
gives maximum buckling load and smallest deformation. 
Figure 6 shows the load-deflection curve of the simply supported laminated composite plate with variable 
fiber spacing under in-plane loading at y-direction obtained by using (2×2) mesh for the quarter plate.  Seven 
equation of fiber distribution were used.  In this example, the geometric properties of the analyzed plate are 
(a=b=1.0 m, h=0.01 m, wo/h=0.0, 0=θ ). From this figure can be noticed that the post buckling behavior of 
composite plate very sensitive for type of distribution fiber and the direction of uniaxial load. So the 
buckling load of the composite plate under in-plane loading at y-direction less than the buckling load of the 
composite plate under in-plane loading at x-direction about 14% for the seventh distribution equation.  The 
seventh distribution equation gives maximum buckling load and smallest deformation.  
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Figure 7 shows the load-deflection curve of the simply supported laminated composite plate with variable 
fiber spacing under in-plane loading at x-direction.  Seven equation of fiber distribution were used. The plate 
has initial imperfection (wo/t) of (0.1) of which shape is considered to be sinusoidal curve where wo is the 
amplitude of the initial imperfection at center of plate.   In this example, the geometric properties of the 
analyzed plate are (a=b=1.0 m, h=0.01 m, wo/h=0.1, 0=θ ). From this figure can be noticed that the post 
buckling behavior of composite plate very sensitive for type of distribution fiber and to the initial 
imperfection.  
Figure 8 shows the effect of fiber’s orientation on the post buckling analysis of composite laminated plate 
with variable spacing fiber under in-plane compressive load.  The seventh distribution fiber equation was 
used in this example.  From this figure, it could be noticed that the post buckling of the plate with (θ=0oand 
θ=90o) gives minimum deformation.  This orientation’s fiber means that it is the optimum for a plate under 
in-plane compressive load.  
Figure 9 shows the effect of fiber’s orientation on the post buckling analysis of composite laminated plate 
with variable spacing fiber under in-plane compressive load at x-direction.  In this example, the geometric 
properties of the analyzed plate are (a=b=1.0 m, h=0.01 m, wo/h=0.1).  The all distribution fiber equations 
were used in this example.  From this figure, it could be noticed that the post buckling of the plate with 
(θ=0oand θ=90o) gives minimum deformation.   
This orientation’s fiber means that it is the optimum for a plate under in-plane compressive load. The 
proposed distribution equation represents optimum equation for the composite plate under in-plane loading. 
 
CONCLUSIONS 
      It has been demonstrated that, for single layer plates having parallel fibers that are not densely 
packed, significant improvement in structural efficiency is obtainable by redistribution of the fibers 
so that they are concentrated more in the plate center where the fiber distribution may change the 
stiffness of the plate.  The behavior of a laminated plate is very sensitive to the type of distribution 
fiber and it is found that the central deflection of a plate with (θ =0o and θ =90o) gives response less 
than others; this orientation of fibers is optimum for plates under in-plane compression load. 
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Figure 1 Deformations of moderately thick plate 
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Figure 4 Eight-node quadrilateral isoparametric element.  
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Figure 5 Post-buckling behavior of a square simply supported laminated composite plate with 
variable fiber spacing under uniaxial compression load x-direction. 
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Figure 6 Post-buckling behavior of a square simply supported laminated composite plate with 
variable fiber spacing under uniaxial compression load y-direction. 
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Figure 7 Post-buckling behavior of a square simply supported laminated composite plate 
with variable fiber spacing under in-plane loading at x-direction 
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