Power Series Method For Solving Nonlinear Volterra Integro-Differential Equations of The Second Kind

Hanan Mahmood Hasson®

Received on: 30/12/2009
Accepted on: 6/5/2010

Abstract
In this work, we present the power series method for solving special types of the first order nonlinear Volterra integro-differential equations of the second kind. To show the efficiency of this method, we solve some numerical examples.

Keywords: Integro-differential, power series.

1. Introduction
It is known that the integro-differential equations arise in a great many branches of sciences, for example, in potential theory, acoustics, elasticity, fluid mechanics, theory of population, [4], [3].

The power series method is one of the important methods that can be used to solve the initial value problem of the linear Volterra integro-differential equations of the second kind, [2].

In [7], the power series method is used to solve the nonlinear Volterra integral equations of the second kind of the form:

\[u(x) = f(x) + \lambda \int_0^x k(x,t) \left(u(t) \right)^p \, dt, \quad p \in \mathbb{N} \]

where \(f \) and \(k \) are known functions, \(\lambda \) is a scalar parameter and \(u \) is the unknown function that must be determined.

Here we use the same method to solve the initial value problem that consists of the first order non-linear Volterra integro-differential equations of the second kind of the form:
Power Series Method For Solving Nonlinear Volterra Integro-Differential Equations of The Second Kind

\[u'(x) = f(x) + \lambda \int_{0}^{x} k(x,t) [u(t)]^p \, dt, \]
\[p \in \mathbb{N} \quad \text{....(1.a)} \]

together with the initial condition:
\[u(0) = \alpha \quad \text{.... (1.b)} \]

where \(f \) and \(k \) are known functions, \(\alpha \) is a known constant, \(\lambda \) is a scalar parameter and \(u \) is the unknown function that must be determined.

Consider the initial value problem given by equations (1). Assumed the solution of equations (1) takes the form:
\[u(x) \cong e_0 + e_1 x + e_2 x^2 \quad \text{....(2)} \]

Then by setting \(x = 0 \) into equation (2) one can get:
\[u(0) \cong e_0. \]

By using the initial condition given by equation (1.b), one can get:
\[e_0 = \alpha. \]

Then by differentiating equation (2) with respect to \(x \) and setting \(x = 0 \) in the resulting equation on can have:
\[u'(0) = e_1. \]

On the other hand, from equation (1.a), one can have:
\[u'(0) = f(0). \]

Therefore
\[e_1 = f(0). \]

Thus the approximated solution takes the form:
\[u(x) \cong \alpha + f(0)x + e_2 x^2 \quad \text{.... (3)} \]

where \(e_2 \) is the unknown parameter that must be determined. To do this, we expand \(k(x,y) \) and \(f(x) \) as a power series. That is,
\[k(x,t) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} k_{ij} x^i t^j \quad \text{.... (4)} \]

and
\[f(x) = \sum_{i=0}^{\infty} f_i x^i \quad \text{.... (5)} \]

By substituting equations (3)-(5) into equation (1.a) one can get:
\[f(0) + 2e_2 x = \sum_{i=0}^{\infty} f_i x^i + \int_{0}^{x} \left(\int_{0}^{t} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} k_{ij} x^i t^j \left[\alpha + f(0)t + e_2 t^2 \right]^p \, dt \right) t^j dt \]

But

\[\int_{0}^{x} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} k_{ij} x^i t^j \left[\alpha + f(0)t + e_2 t^2 \right]^p \, dt \]
\[
\left[\alpha + f(0)t + e_2t^2 \right]^p = \sum_{k=0}^{p} \binom{p}{k} \alpha^k \left[f(0)t + e_2t^2 \right]^{p-k} = \sum_{k=0}^{p} \binom{p}{k} \alpha^k t^{p-k} \left[f(0) + e_2t \right]^{p-k} = \sum_{k=0}^{p} \binom{p}{k} \alpha^k t^{p-k} \sum_{l=0}^{p-k} \binom{p-k}{l} [f(0)]^l [e_2t]^{p-k-l}
\]

Therefore equation (6) becomes
\[
f(0) + 2e_2x = \sum_{i=0}^{\infty} f_i x^i + \int 0^x \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \binom{p}{k} \alpha^k t^{p-k} \sum_{l=0}^{p-k} \binom{p-k}{l} [f(0)]^l [e_2t]^{p-k-l} dt = f_0 + f_1x + f_2x^2 + \mathcal{L} + \int 0^x (k_{00} + k_{10}x + k_{01}t + \mathcal{L}) \left[f(0) \right]^p [e_2t]^{p-1} + \left[\binom{p}{0} \sum_{l=0}^{p} \binom{p}{l} [f(0)]^l [e_2t]^{p-l} \right] dt
\]
It is clear that \(f(0) \) and \(Q(x^2) \) is a polynomial of degree greater than or equal two. By neglecting \(Q(x^2) \) and solving the equation

\[
e_2 = \frac{f_1 + k_0 \alpha^p}{2},
\]

the unknown parameter \(e_2 \) is determined and therefore the coefficient of \(x^2 \) in equation (3) is obtained.

By repeating the above procedure \(m-1 \) iterations, a power series of the following form derives:

\[
y(x) = \sum_{i=0}^{m} e_i x^i \quad \ldots \quad (7)
\]
Equation (7) is an approximated solution of the initial value problem given by equations (1).

3. Numerical Examples:

In this section we present two examples that are solved by using power series method. These examples shows the efficiency of this method.

Example (1):

Consider the first order nonlinear integro-differential equation of the second kind:

\[u'(x) = \frac{\frac{1}{2} x^2 - \frac{1}{9} + \int_0^x (x^2 + t) [u(t)]^3 \, dt}{3} \]

Together with the initial condition:

\[u(0) = 1 \quad \ldots (8.b) \]

Therefore

\[f(x) = -e^{-x} + \frac{1}{3} \left(x^2 + x + \frac{1}{3} \right) e^{-3x} - \frac{1}{3} x^2 - \frac{1}{9}, \quad p = 3 \]

and

\[k(x,t) = x^2 + t. \]

We solve this example by using the power series method. To do this, let \(e_0 = u(0) \) and \(e_1 = u'(0) \). Therefore \(e_0 = 1 \) and \(e_1 = f(0) = -1 \). Assume the solution of the above initial value problem takes the form:

\[u(x) \cong e_0 + e_1 x + e_2 x^2. \]

Hence

\[u(x) \cong 1 - x + e_2 x^2. \]

But
\[
\begin{align*}
 k_{ij} &= \begin{cases}
 1 & \text{for } (i, j) = (0,1) \text{ and } \varepsilon \text{.}

 0 & \text{for } (i, j) = (0,2) \varepsilon \text{.}
 \end{cases}

 \text{Thus } k_{00} = 0. \text{ Therefore }

 e_2 = \frac{f_1 + k_{00} \alpha^9}{2} = \frac{1}{2}.
\end{align*}
\]

In this case

\[
Q(x^3) = \frac{12}{35} x^7 + \frac{5}{8} x^6 + \frac{7}{64} x^8 -
\]

\[
\frac{1}{56} x^9 + \frac{3}{8} x^8 - \frac{7}{10} x^7 -
\]

\[
\frac{1}{11} (x_3)^3 x^{11} - \frac{2}{21} (x_3)^2 x^9 + \frac{29}{84} e_3 x^9 -
\]

\[
\frac{1}{6} (x_3)^2 x^{11} - \frac{1}{10} (x_3)^3 x^{12} +
\]

\[
\frac{9}{40} (x_3)^2 x^{10} - \frac{5}{8} e_3 x^8 + \frac{3}{8} (x_3)^2 x^8 -
\]

\[
\frac{3}{32} e_3 x^{10} + \frac{12}{35} e_3 x^7 - \frac{3}{5} e_3 x^7 +
\]

\[
\frac{1}{4} e_3 x^6 + \left[-\frac{x^2}{3!} + \frac{x^4}{4!} - L \right] -
\]

\[
\frac{1}{3} x^2 \left[-3 x + \frac{9}{2!} x^2 - \frac{27}{3!} x^3 + L \right] -
\]

\[
\frac{1}{3} \left[-3 x + \frac{9}{2!} x^2 - \frac{27}{3!} x^3 + L \right] -
\]

\[
\frac{1}{9} \left[-\frac{27}{3!} x^3 + \frac{81}{4!} x^4 - L \right].
\]

By neglecting \(Q(x^3)\) then equation (9) becomes

\[
\left(3 e_3 - \frac{1}{3} + 1 - \frac{1}{2} + \frac{1}{3} \right) x^2 = 0
\]

and hence \(e_3 = -\frac{1}{3!}\). Thus

\[
u(x) \equiv 1 - x + \frac{1}{2} x^2 + e_3 x^3
\]

one can get:

\[
\left(3 e_3 - \frac{1}{3} + 1 \right) x^2 + Q(x^3) = 0
\]

\[
\text{….}(9)
\]

where

\[
Q(x^3) = \frac{12}{35} x^7 + \frac{5}{8} x^6 + \frac{7}{64} x^8 -
\]

\[
\frac{1}{56} x^9 + \frac{3}{8} x^8 - \frac{7}{10} x^7 -
\]

\[
\frac{1}{11} (x_3)^3 x^{11} - \frac{2}{21} (x_3)^2 x^9 + \frac{29}{84} e_3 x^9 -
\]

\[
\frac{1}{6} (x_3)^2 x^{11} - \frac{1}{10} (x_3)^3 x^{12} +
\]

\[
\frac{9}{40} (x_3)^2 x^{10} - \frac{5}{8} e_3 x^8 + \frac{3}{8} (x_3)^2 x^8 -
\]

\[
\frac{3}{32} e_3 x^{10} + \frac{12}{35} e_3 x^7 - \frac{3}{5} e_3 x^7 +
\]

\[
\frac{1}{4} e_3 x^6 + \left[-\frac{x^2}{3!} + \frac{x^4}{4!} - L \right] -
\]

\[
\frac{1}{3} x^2 \left[-3 x + \frac{9}{2!} x^2 - \frac{27}{3!} x^3 + L \right] -
\]

\[
\frac{1}{3} \left[-3 x + \frac{9}{2!} x^2 - \frac{27}{3!} x^3 + L \right] -
\]

\[
\frac{1}{9} \left[-\frac{27}{3!} x^3 + \frac{81}{4!} x^4 - L \right].
\]

Power Series Method For Solving Nonlinear Volterra Integro-Differential Equations of The Second Kind

\[
\left(4e_4 - \frac{1}{6} + 1 - \frac{3}{2} + \frac{1}{2} \right) x^3 +
\]

\[Q(x) = 0 \quad \ldots \quad (10)\]

Where

\[Q(x) = \frac{59}{765} x^9 + \frac{7}{320} x^{10} + \]

\[
\frac{5}{1188} x^{11} + \frac{13}{64} x^8 + \frac{3}{8} x^4 - \]

\[
\frac{1}{2160} x^{12} - \frac{2}{5} x^7 - \frac{1}{24} (e_4)^2 x^{14} + \]

\[
\frac{7}{12} x^6 - \frac{3}{5} x^5 - \frac{1}{14} (e_4)^3 x^{14} - \]

\[
\frac{26}{63} e_4 x^9 + \frac{9}{35} e_4 x^7 - \frac{1}{13} (e_4)^3 x^{15} - \]

\[
\frac{14}{143} (e_4)^2 x^{13} - \frac{1}{2} e_4 x^6 - \frac{1}{4} e_4 x^8 - \]

\[
\frac{7}{40} (e_4)^2 x^{12} + \frac{31}{720} e_4 x^{12} - \]

\[
\frac{1}{13} e_4 x^{13} - \frac{2}{33} (e_4)^2 x^{11} - \]

\[
\frac{59}{396} e_4 x^{11} - \frac{3}{10} (e_4)^2 x^{10} + \]

\[
\frac{13}{40} e_4 x^{10} + \left[\frac{x^4}{4!} + \frac{x^5}{5!} \right] - \]

\[
\frac{1}{3} x \left[\frac{9}{2} x^2 - \frac{27}{3!} x^3 + L \right] - \]

\[
\frac{1}{3} \left[\frac{27}{3!} x^3 + \frac{81}{4!} x^4 - L \right] - \]

\[
\frac{1}{9} \left[\frac{81}{4!} x^4 + \frac{243}{5!} x^5 - L \right] - \]

By neglecting \(Q(x^4)\) then equation (10) becomes

\[
\left(4e_4 - \frac{1}{6} + 1 - \frac{3}{2} + \frac{1}{2} \right) x^3 = 0
\]

and hence \(e_4 = \frac{1}{4!}\). Thus

\[u(x) \equiv 1 - x + \frac{1}{2!} x^2 - \frac{1}{3!} x^3 + \frac{1}{4!} x^4.\]

By continuing in this manner, one can get:

\[u(x) \equiv 1 - x + \frac{1}{2!} x^2 - \frac{1}{3!} x^3 + \]

\[
\frac{1}{4!} x^4 - \frac{1}{5!} x^5 + \ldots = e^{-x}\]

Note that this approximated solution is the exact solution of the initial value problem given by equations (8).

Example (2):

Consider the first order nonlinear integro-differential equation of the second kind:

\[u'(x) = 3x^2 - \frac{1}{8} x^8 \sin x + \int_0^x t \sin x [u(t)]^2 dt \ldots (11.a)\]

\[u(0)=0 \quad \ldots \quad (11.b)\]

Here \(f(x) = 3x^2 - \frac{1}{8} x^8 \sin x\), \(p=2\) and \(k(x, t) = t \sin x\).

We solve this example by using the power series method. To do this, let \(e_0 = u(0)\) and \(e_1 = u'(0)\). Therefore \(e_0 = 0\) and \(e_1 = f(0) = 0\).

Assume the solution of the above initial value problem takes the form:

Power Series Method For Solving Nonlinear Volterra Integro-Differential Equations of The Second Kind

\[u(x) \equiv e_0 + e_1 x + e_2 x^2 \]

Hence

\[u(x) \equiv e_2 x^2. \]

But

\[\sin x = \sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i + 1)!}. \]

Therefore

\[f(x) = 3x^2 - \frac{1}{8} x^8 \sin x \]

\[= 3x^2 - \frac{1}{8} x^8 \sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i + 1)!}. \]

and

\[k(x,t) = t \sin x = t \sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i + 1)!}. \]

Hence \(f_1 = 0 \) and \(k_{00} = 0 \) and this implies that

\[e_2 = \frac{f_2 + k_{00} \alpha^0}{2} = 0. \]

In this case

\[
Q(x^2) = -\frac{1}{6} (e_2)^2 x^6 \left[\sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i + 1)!} \right]
- 3x^2 + \frac{1}{8} x^8 \left[\sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i + 1)!} \right].
\]

Thus

\[u(x) \equiv 0. \]

By repeating the above argument for the approximated solution:

\[u(x) \equiv e_3 x^3 \]

one can get:

\[(3e_3 - 3) x^2 + Q(x^3) = 0 \]

\[\text{.... (12)} \]

where

\[Q(x^3) = -\frac{1}{8} (e_3)^2 x^8 \left[\sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i + 1)!} \right] + \]

\[\frac{1}{8} x^8 \left[\sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i + 1)!} \right] \]

By neglecting \(Q(x^3) \) then equation (12) becomes

\[(3e_3 - 3) x^2 = 0 \]

and hence \(e_3 = 1 \). Thus

\[u(x) \equiv x^3. \]

By repeating the above argument for the approximated solution:

\[u(x) \equiv x^3 + e_4 x^4 \]

one can have:

\[(4e_4) x^3 + Q(x^4) = 0 \quad \text{.... (13)} \]

where

\[
Q(x^4) = \left[\frac{1}{10} (e_4)^2 x^{10} + \frac{2}{9} e_4 x^9 \right] + \sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i + 1)!} \]

By neglecting \(Q(x^4) \) then equation (13) becomes
(4 \times e_4) x^3 = 0
and hence \(e_4 = 0 \). Thus
\[u(x) \equiv x^3. \]
By continuing in this manner, one can get:
\[u(x) \equiv x^3 + 0x^4 + 0x^5 + \ldots = x^3. \]
Note that this approximated solution is the exact solution of the initial value problem given by equations (11).

Remark(1):
The power series method can be also used to solve the initial value problem that consists of the first order nonlinear Volterra integro-differential equation of the second kind:
\[u'(x) = f(x) + \int_a^x k(x, t) \left[u(t) \right]^p \, dt \]
\[\ldots \ldots (14.a) \]

To do this let \(z = t - a \) then equation (14.a) becomes
\[u'(x) = f(x) + \int_o^{x-a} k(x, z + a) \left[u(z + a) \right]^p \, dz \]
\[\ldots \ldots (14.b) \]

Then by setting \(s = x - a \) in the above equation one can have:
\[y'(s) = f(s + a) + \int_o^{s+a} k(s + a, z + a) \left[y(z) \right]^p \, dz \]
\[\ldots \ldots (15.a) \]
where \(y(s) = u(s + a) \). Thus
\[y(0) = u(a) = \alpha \]
Therefore the initial value problem given by equations (14) reduces to the initial value problem given by equations (15).

4. References