On Generalized Simple Singular P-injective Rings

Ala’a A. Hammodat

Dept. of Math., College of Education, University of Mosul, Mosul, Iraq

(Received 17 / 2 / 2008, Accepted 5 / 6 / 2008)

Abstract

A ring R is called GSSP-ring, if for any maximal essential right ideal M of R and any $b \in M$ then bR/bM is p-injective. In this paper we give conditions under which GSSP-ring are strongly regular. Finally, some new characteristic properties of GSSP-ring are given.

1. Introduction:

Throughout this paper, R denotes an associative ring with identity, and all modules are unitary right R-modules.

A right R-modules M is said to be p-injective if, for any principle right ideal p of R, any right R-homomorphism $f : p \to M$, there exists y in M such that $f(b) = yb$ for all $b \in p$. This concept was introduced by Ming [4]. We Recall that: (1) R is called strongly regular if for every a in R, there exists an element b in R such that $a = a^2 b$. see [6], (2) A ring R is said to be ERT-ring if for every essential right ideal of R is a two sided ideal. See [5], (3) An ideal I of the ring R is essential if I has a non-zero intersection with every non-zero ideal of R, (4) Let R be a ring such that every maximal right ideal is a two sided ideal, then R is called a quasi-duo ring, see [7], (5) A ring R is called reduced if, R contains no non-zero nilpotent element, see [2], (6) For any element a in R, $r(a)$ and $I(a)$ denote the right and left annihilator of a respectively, see [2]. (7) $J(R), Z(R)$ will stand respectively for the Jacobson radical, the left singular ideal. See [1]

2. GSSP-rings:

In this section, some of the definitions and basic properties of GSSP-ring are given and we introduce a generalization of such rings. Following [4], a ring is said to be SSPI-rings, if and only if every simple singular R-module is P-injective.

Definition 2-1:

A ring R is called a GSSP-ring (generalized simple singular P-injective) if, for any maximal essential right ideal M of R, any $b \in M, bR/bM$ is P-injective.

Following [2] a ring R is said to be abelian if each idempotent element of R is central. Next, we give the following lemma which play the key role in several of our proofs.

Lemma 2-2:

Let R be abelian ring, for any maximal right ideal M of R, and for any $a \in M$, if $r(a) \subseteq M$, then M is an essential right ideal of R.

Proof:

Let $0 \neq a \in M$ and let $r(a) \subseteq M$. Suppose that M is not essential, then M is direct summand, and hence there exists $0 \neq e = e^2$ in R such that $M = r(e)$. Since $a \in M = r(e)$, then $eae = 0$. Since R is abelian, then $ae = 0$, and $e \in r(a) \subseteq M = r(e)$.

Therefore $e = 0$, a contradiction. Thus M is essential. Now, we introduce the following theorem.

Theorem 2-3:

Let R be a ring GSSP-ring, then any right ideal of R is idempotent.

Proof:

Let I be a right ideal of R and let $a \in I$. If $RaR + r(a) \neq R$. Let M be a maximal right ideal containing $RaR + r(a)$. Then by lemma (2-2), M is essential right ideal of R. If $aRa = aM$, then $a = ac$ for some c in M and this implies $a(1-c) = 0$. So, $(1-c) \in r(a) \subseteq M$ whence $1 \in M$, a contradiction.

If $aRa \neq aM$, the right R-homomorphism $g : R/M \to aR/aM$ defined by $g(b + M) = ab + aM$ for all b in R implies $R/M \cong aR/aM$. Defined $f : aR \to R/M$ as a right R-homomorphism by $f(ax) = x + M$, for all x in R, then f is a well define right R-homomorphism. Indeed, let $x_1, x_2 \in R$ with $ax_1 = ax_2$ implies $(x_1 - x_2) \in r(a) \subseteq M$, thus $x_1 + M = x_2 + M$.

Hence $f(ax_1) = x_1 + M = x_2 + M = f(ax_2)$.

Since R/M is P-injective, then there exists c in R such that $f(ac) = c + M$ and $f(ax = cx + M)$. yields $1 + M = f(a) = da + M$. for a, d in R, whence $1 \in M$, a contradiction. Thus $RaR + r(a) = R$. In particular $xay + c = 1$, for some x, y in R and c in $r(a)$, so we have $a = axay + ac = axay + 0$. Therefore $a = axay \in I^2$.

This prove $I = I^2$.

Theorem 2-4:

Let R be ERT and GSSP-ring such that the right annihilator of any element in R is essential. Then:

(1) R is reduced.

(2) $J(R) = 0$.

Proof 1:

Let $0 \neq a \in R$ such that $a^2 = 0$ and let M be a maximal right ideal containing $r(a)$. If $aRa = aM$, then $a = ac$ for some c in M this implies $(1-c) \in r(a) \subseteq M$, whence $1 \in M$, a contradiction. Now, since $R/M \cong aR/aM$, then R/M is P-injective.
Defined \(f : aR \to R/M \) by \(f(ar) = r + M \), for every \(r \) in \(R \). Now, we show that \(f \) is a well defined right \(R \)-homomorphism. Indeed if \(ar_1 = ar_2 \) for every \(r_1, r_2 \) in \(R \). Then \(a(r_1 - r_2) = 0 \), therefore \((r_1 - r_2) \in r(a) \subseteq M \) and hence \(r_1 + M = r_2 + M \). Since \(R/M \) is \(\mathbb{P} \)-injective, then there exists \(y \) in \(R \) such that \(f(ar) = (y + M)ar \), yields \(1 + M = f(a) = ya + M \). For some \(y \) in \(R \), so \((1 - ya) \in M \), but \(ya \in r(a) \) is \(a \) right annihilator and hence it is essential. Since \(R \) is ERT, therefore \(r(a) \) is a two sided ideal so \(ya \in M \), thus \(1 \in M \), a contradiction. Therefore \(a = 0 \), whence \(R \) is reduced.

Proof 2:
Let \(a \in J(R) \). If \(aR + r(a) \subseteq R \). Then there exists a maximal right ideal \(M \) containing \(aR + r(a) \). Since \(a \in M \) and \(r(a) \subseteq M \), then by Theorem (2-4)(1) and lemma (2-2), then \(M \) is essential. If \(aR = aM \), then \(a = ab \) for some \(b \) in \(M \) this implies \((1-b) \in r(a) \subseteq M \), so \(1 \in M \), a contradiction. If \(aR = aM \), the right \(R \)-homomorphism \(g : R/M \to aR/aM \) defined by \(g(b + M) = ab + aM \), for all \(b \) in \(R \) implies that \(R/M \cong aR/aM \).

Define \(f : aR \to R/M \) as a right \(R \)-homomorphism by \(f(ax) = x + M \) for all \(X \) in \(R \), since \(R \) is reduced (Theorem 2-4)(1) then clearly \(f \) is a well defined \(R \)-homomorphism, so there exists \(y \) in \(R \) such that \(f(ax) = (y + M)x \). Thus \(1 + M = f(a) = ya + M \). But \(a \in J \subseteq M \), so \(1 \in M \), a contradiction.

Therefore \(aR + r(a) = R \). In particular \(ar + d = 1 \). for \(d \in r(a) \). This implies \(a = a^2 r \), since \(a \in J \), then there exists an invertible element \(u \) in \(R \) such that \((1-ar)u = 1 \), so \(u(a - a^2 r)u = a \). yields \(a = 0 \). This proves that \(J(R) = 0 \).

The following theorem gives the condition of being right GSSP-ring are strongly regular.

Theorem 2-5: Let \(R \) be an abelian ring and right quasi-duo ring. If \(R \) is GSSP-ring, then \(R \) is strongly regular.

Proof:
Assume that \(0 \neq a \in R \) such that \(a^2 = 0 \). Then there exists the maximal right ideal \(M \) of \(R \) such that \(aR + r(a) \subseteq M \). Observe that \(M \) must be an essential right ideal of \(R \). (lemma 2-2) . By similar method of proof used in Theorem (2-4)(2), we get \(aR + r(a) = R \). In particular \(ay + d = 1 \) for some \(y \) in \(R \), \(d \) in \(r(a) \), thus we have \(a^2 y = a \). Therefore \(R \) is strongly regular ring.

Before closing this section, we present the following result.

Proposition 2-6:
If \(R \) is a quasi-duo, GSSP-ring, then \(Z(R) = 0 \).

Proof:
If \(Z(R) \neq (0) \), there exists a non-zero element \(a \) in \(Z(R) \) with \(a^2 = 0 \). We want to prove that \(aR + r(a) = R \). If \(aR + r(a) \neq R \). Let \(M \) be a maximal right ideal of \(R \) containing \(aR + r(a) \). Since \(a \in Z(R) \), then \(r(a) \) is essential right ideal and by lemma (2-2) \(M \) is essential maximal right ideal of \(R \). If \(aR = aM \), then \(a = ab \) for some \(b \) in \(M \) and \((1-b) \in r(a) \subseteq M \), whence \(1 \in M \), a contradiction. \(M \neq R \). If \(aR \neq aM \), the right \(R \)-homomorphism \(g : R/M \to aR/aM \) defined by \(g(b + M) = ab + aM \) for all \(b \in R \) implies that \(R/M \cong aR/aM \). since \(aR/aM \) is \(\mathbb{P} \)-injective, then \(R/M \) is \(\mathbb{P} \)-injective.

Consider the canonical mapping \(f : aR \to R/M \), then there exists \(a \) in \(R \) such that \(f(a) = 1 + M = ba + M \) implies \((1 - ba) \in M \), \(ba \in M \) (because \(M \) is two sided ideal), then \(1 \in M \), a contradiction. Hence \(aR + r(a) = R \).

In particular \(1 + ar + d \), \(r \) in \(R \), \(d \) in \(r(a) \), so \(a = a^2 r + ad \). Therefore \(Z(R) = 0 \).
References:

المتعمقة P

في الحلقات المنفردة البسيطة العامة من النمط GSSP

علاء عبد الرحيم حمودات
قسم الرياضيات ، كلية التربية ، جامعة الموصل ، الموصل ، العراق

(تاريخ الاستلام: 71/2/2228 ، تاريخ القبول: 5/6/2228)

الملخص

يفسر بالحلقة \(R \) بأنها من النمط GSSP ، إذا كان لأي مثالي أعظم أساسي أيمن \(bM \) من حلقة \(R \) ، فإن النمط P . في هذا البحث تم إعطاء شروط أخرى لكي تكون كل حلقة من النمط GSSP من النمط GSSP.